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Model and general problem



The model

Abundances of n living species u : R+ 7→ Rn
+ follow the generalized

Lotka-Volterra ODE

u̇(t) = u(t)� (r + (Y − I ) u(t))

� Y ∈ Rn×n: interaction matrix

� r ∈ Rn
+: intrinsic growth rates vector
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Problem

The LV ODE has a globally stable equilibrium u? =
[
u?,i

]
∈ Rn

+

if ∃ a diagonal matrix C > 0 such that CY + Y>C < 2C 2.

We assume that

� Y and r are random, r ⊥⊥ Y

� n→∞
� lim supn ‖(Y + Y T)/2‖ < 1 a.s.

Problem

Asymptotics of the equilibrium distribution, i.e., the random

probability measure

µu? =
1

n

∑
i∈[n]

δu?,i

Usually u? ∈ border of 1st quadrant. Percentage of surviving species ?
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LCP characterization of equilibrium

When ‖(Y + Y>)/2‖ < 1, matrix I − Y is a P–matrix, i.e., all principal

minors > 0. Then

� The Linear Complementarity Problem (LCP): here, find a vector

z such that

z < 0

z � (r + (Y − I ) z) = 0

r + (Y − I ) z 4 0

has an unique solution for each r ∈ Rn

� u? is this solution

Our approach

Asymptotics of µu? when u? = LCP(Y − I , r)
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Interaction matrix from Gaussian

Orthogonal Ensemble (GOE)



LV in GOE case

LV model

u̇ = u � (r + (βG − I ) u)

where

� G is GOE.

� r ⊥⊥ G , empirical measure µr a.s.−−→ µ̄r is the Wasserstein space

P2(R+)

� We take β < 1/2. Indeed, ‖G‖ a.s.−−→n 2 as a GOE matrix. Thus u?
exists and the LCP problem is well-defined since lim supn β‖G‖ < 1

a.s.
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µu? asymptotics in GOE case

Theorem [AHMN’23]

Let R ∼ µ̄r and Z ∼ N (0, 1) with R ⊥⊥ Z . For each β < 1/
√

2, the

system

β =
α

1 + γα2

σ2 = α2E(σZ + R)2+

γ = P [σZ + R > 0]

admits an unique solution (α, σ, γ) ∈ (
√

2,∞)× (0,∞)× (0, 1).

Moreover, for β < 1/2 (< 1/
√

2 in physics literature)

µu? a.s.−−−→
n→∞

L
(
(1 + α2γ)(σZ + R)+

)
in P2(R+)

Note: γ is (a lower bound on) the limit proportion of surviving species

Result obtained previously by [Bunin’17], [Galla’18], ...
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Proof by Approximate Message

Passing (AMP)



AMP principle

Iterative algorithm widely studied in statistical physics, coding and

wireless communications, learning theory, ...

Basic algorithm: G is a n × n GOE matrix, and f0, f1, ... is a sequence of

R2 → R Lipschitz functions

General algorithm form

xk+1 =
[
xk+1,i

]
i∈[n]

= Gfk(xk , a)+“correction”, fk(xk , a) =
[
fk(xk,i , ai )

]
i

where a is a parameter vector, and (x0, a) ⊥⊥ G

Thanks to the correction, we can identify the asymptotics of the joint

empirical measure

µa,x1,x2,...,xk =
1

n

∑
i∈[n]

δai ,x1,i ,x2,i ,...,xk,i ∈ P(Rk+1)

when n→∞, for each fixed k
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AMP algorithm and results

AMP algorithm:

xk+1 = Gf (xk , a)− 〈∂x f ′k (xk , a)〉fk−1(xk−1, a)

with 〈x〉 =
∑

xi/n and ∂x fk(xk , a) =
[

d
dx fk(xk,i , ai )

]
i

Approximation of so-called message passing algorithms in statistical

physics

Assuming

µa,x0 a.s.−−−→
n→∞

L (ā, x̄) in (say) P2(R2),

µa,x1,x2,...,xk a.s.−−−→
n→∞

L (ā)⊗N (0,Rk) in P2(Rk+1)

where the sequence of covariance matrices (Rk) is constructed recur-

sively according to the State Evolution (SE) equations

(Bayati, Montanari, Bolthausen, ... ∼ 2010)
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SE equations

Let (Z1,Z2, . . .) with L ((Z1, . . . ,Zk)) = N (0,Rk) and

(Z1,Z2, . . .) ⊥⊥ (ā, x̄).

Recursion:

R1 = Ef0(x̄ , ā)2

...

Knowing Rk = Cov(Z1, . . . ,Zk), we have

E [Zk+1Z`] =

{
Efk(Zk , ā)f`−1(Z`−1, ā) if ` = 2, . . . , k + 1

Efk(Zk , ā)f0(x̄ , ā) if ` = 1

⇒ Rk+1
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µu? asymptotics: proof with AMP

Set α > 0 and a ∈ Rn
+ to be specified later. Put

f0(x , a) = f1(x , a) = · · · = f (x , a) = α(x + a)+.

AMP algorithm

xk+1 = αG (xk + a)+ − α2γk(xk−1 + a)+ with

γk = 〈∂x(xk + a)+〉 = 〈1xk+a>0〉

Key observation: Using an idea of [Donoho-Montanari’13],

[Montanari-Richard’16], we can show that (Zk ,Zk+1) in the SE equations

become more and more correlated:

Corr(Zk ,Zk+1) −−−→
k→∞

1,

which implies that

lim
k

aslim
n

〈xk+1, xk〉
‖xk+1‖‖xk‖

= 1.
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Proof with AMP (cont’d)

Thus,

xk = αG (xk + a)+ − α2γk(xk + a)+ + εk

where limk aslimn ‖εk‖2/n = 0. We rewrite this

xk + a = αG (xk + a)+ − α2γk(xk + a)+ + a + εk , or

−(xk + a)− = αG (xk + a)+ − (1 + α2γk)(xk + a)+ + a + εk , or

− (xk + a)−
1 + α2γk

=

(
α

1 + α2γk
G − I

)
(xk + a)+ +

a

1 + α2γk
+ ε′k

in other words,

(xk + a)+ = LCP

(
α

1 + α2γk
G − I ,

a

1 + α2γk
+ ε′k

)
.

Remember that

u? = LCP(βG − I , r)

Identifying the two, using LCP perturbation results + SE equations

⇒ the theorem
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A more involved interaction

matrix model



New interaction matrix model

Non-necessarily Gaussian, centered, variance profile, pairwise correlations,

and sparse

Yij =
√
vijXij

� EXij = 0, EX 2
ij = 1 and

(
E|Xij |k

)1/k ≤ Ckη/2

� Elements of {Xii , (Xij ,Xji )i<j} are independent

� Corr(Xij ,Xji ) = τij ∈ [−1, 1] (correlation profile).

V = [vij ] < 0 is the variance profile matrix. For Kn & (log n)η∨1,

� # non-zero elements per row ≤ Cst× Kn

� vij ≤ Cst/Kn

� All row sums ≥ Cst
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Ecological interpretation

� Couples of pairwise interactions are centered and independent

� Pairwise correlations specific to couples (i , j), reminiscent of the

well-known elliptic model:

τij = 1: often models competitive or mutualistic interactions

τij = −1: predator-prey

τij = 0: uncorrelated interactions

� Variance profile V : inhomogeneous interaction strengthes

� Sparsity: every species interacts with a small proportion, Kn/n, of

other species
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Asymptotic behavior of µu?

No assumed structure on the variance profile or the correlation profile

matrices V =
[
vij

]
and T =

[
τij

]
Therefore, µu? has no reason to converge

However, we can show that there exists a deterministic sequence (µn)

of probability measures that approximates µu? for large n

The parameters of a measure µn will be obtained through the solution of

a large system of equations

With additional assumptions, this system can be reduced to two integral

equations
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Result: system of equations

Additional assumptions:

� r is deterministic

� lim supn ‖(Y + Y T)/2‖ < 1 a.s. Conditions for this in terms of

matrices V and T can be deduced from literature, e.g.,

[Bandeira-Van Handel’16]

� V and Q =
[√

vijvjiτij

]n
i,j=1

have row sum norms < 1/4

System of equations

For each integer n > 0, let Z ∼ N (0, In). The system of 2n equations

in (p, ζ) ∈ Rn
+ × [−1, 1]n{
p = V diag(1 + ζ)2 E (

√
p � Z + r)

2
+

ζ = diag(1 + ζ)Q diag(1 + ζ)P [
√
p � Z + r ≥ 0]

admits an unique solution.
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Result: µu? ∼ mixture of truncated Gaussians

Theorem [GHN’24]

Let ξ be the Gaussian vector

ξ =
[
ξi

]
i∈[n]

= diag(1 + ζ) (
√
p � Z + r)

and define the deterministic probability measure µn = L
(
(ξθ)+

)
,

where θ is a uniformly distributed random variable on [n], independent

of Z . Then,

dist2 (µu? ,µn)
P−−−→

n→∞
0

(distance in the space P2(R))
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Proof: a new AMP algorithm

New AMP for the generalized elliptic sparse model with a variance profile.

Might be helpful in contexts other than ecology, e.g., in learning theory

Measurement matrix: W = S�1/2 � X , where

� X is a above (with a correlation profile)

� S = [sij ] < 0 has same properties as V above:

For Kn & (log n)η∨1,

� # non-zero elements per row ≤ Cst × Kn

� sij ≤ Cst/Kn

� All row sums ≥ Cst
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Algorithm

f0, f1, . . . sequence of R2 → R functions with sufficient regularity

conditions

Deterministic parameter vector a ∈ Rn and initial value vector x0 ∈ Rn.

Algorithm:

xk+1 =
[
xk+1,i

]
= Wfk(xk , a)− diag (B ∂fk(xk , a)) fk−1(xk−1, a)

B =
[√

sijsjiτij

]
and ∂fk(xk , a) =

[
d
dx fk(xk,i , ai )

]
i∈[n]

.
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Result

We define a centered Gaussian family (Zk,i )k≥1,i∈[n] through appropriate

DE equations (below)

Theorem

For each k ≥ 1 and each continuous test function ϕ with quadratic

growth at most,

1

n

∑
i∈[n]

ϕ(ai , x1,i , . . . , xk,i )− Eϕ(ai ,Z1,i , . . . ,Zk,i )
P−−−→

n→∞
0

(amounts to asymptotic behavior of µa,x1,...,xk in probability in the P2

space)

A combinatorial proof along the lines of [Bayati-Lelarge-Montanari’15]

building on the message passing structure of the algorithm.
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Thank you

Questions?

19



The DE equations for our model

Distribution of the centered Gaussian family (Zk,i )k≥1,i∈[n].

The n sequences Zi = (Zk,i )k≥1 are independent. The covariance

matrices Rk
i of the vectors ~Z k

i = [Z1,i , . . . ,Zk,i ] are defined recursively in

k as follows.

R1
i =

∑
`∈[n]

si`f0(x0,i , ai )
2 for i = 1, . . . , n

· · ·
Given Rk

i for i = 1, . . . , n,

Hk
i = E


f0(x0,i , ai )

f1(Z1,i , ai )
...

fk(Zk,i , ai )


[
f0(x0,i , ai ) f1(Z1,i , ai ) · · · fk(Zk,i , ai )

]

Rk+1
i =

n∑
`=1

si`H
k
` for i = 1, . . . , n
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