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Model and general problem



The model

Abundances of n living species u : R — R/ follow the generalized
Lotka-Volterra ODE

e Y € R"™": interaction matrix

e r € R7: intrinsic growth rates vector



The LV ODE has a globally stable equilibrium u, = {u*,,} e R}
if 3 a diagonal matrix C > 0 such that CY + YT C < 2C2.
We assume that

e Y and r arerandom, r 1L Y
e n—

o limsup, (Y +YT)/2]| <1as.

Problem

Asymptotics of the equilibrium distribution, i.e., the random

pr = % Z 6'-1*,[

i€[n]

probability measure

Usually u, € border of 1st quadrant. Percentage of surviving species ?



LCP characterization of equilibrium

When |[(Y + Y T)/2|| < 1, matrix | — Y is a P-matrix, i.e., all principal
minors > 0. Then

e The Linear Complementarity Problem (LCP): here, find a vector

z such that
z=0
zoO(r+(Y-1z)=0
r+(Y—=1)z=<0

has an unique solution for each r € R”

e u, is this solution

Our approach
Asymptotics of pu“* when u, = LCP(Y — [, r)



Interaction matrix from Gaussian
Orthogonal Ensemble (GOE)




LV in GOE case

LV model
U=u®(r+(8G—1u)
where
e G is GOE.
e r 1L G, empirical measure p" 225 [i, is the Wasserstein space
Pa(Ry)

o We take 8 < 1/2. Indeed, ||G|| 22, 2 as a GOE matrix. Thus u,
exists and the LCP problem is well-defined since limsup, || G|| < 1
a.s.



" asymptotics in GOE case

Theorem [AHMN’23]

Let R ~ Ji, and Z ~ N(0,1) with R 1L Z. For each 8 < 1/+/2, the
system

a

p= 1+ va?

0? = ’E(cZ + R)%
y=PloZ+ R > (]

admits an unique solution («, a,7) € (v/2,00) x (0,00) x (0,1).
Moreover, for 3 < 1/2 (< 1/+/2 in physics literature)

s ? L ((1+e®y)(eZ+R);) inPa(Ry)

Note: ~ is (a lower bound on) the limit proportion of surviving species

Result obtained previously by [Bunin'17], [Galla'18], ...



Proof by Approximate Message
Passing (AMP)



AMP principle

Iterative algorithm widely studied in statistical physics, coding and
wireless communications, learning theory, ...

Basic algorithm: G is a n x n GOE matrix, and fo, f1, ... is a sequence of

R? — R Lipschitz functions

General algorithm form

Xk4+1 = |:Xk+1’,1 el = Gfk(Xk, a)—i—“correction”7 fk(Xk, a) = [fk(Xk’,', a,-)} ]
Iefn i
where a is a parameter vector, and (xp,a) L. G

Thanks to the correction, we can identify the asymptotics of the joint
empirical measure

1 k
XUX2seees Xk +1
’ua e o= E Z 63hX1,hX2,h-~~ka,i € P(R )
i€[n]

when n — oo, for each fixed k



AMP algorithm and results

AMP algorithm:
Xer1 = Gf (i, @) — (Oxfy(Xk; @)) fie—1(Xk—1, 2)
with <X> = ZX,'/H and axfk(Xk, a) = [d%fk(xk,,-, a,'):| .

Approximation of so-called message passing algorithms in statistical
physics
Assuming

Ma,Xo L} g(é, )_() in (say) P2(]R2)7

n— o0

Ma,X17X27.._,Xk a.s. f(é) ®N(0, Rk) in P2(Rk+1)

n—o0

where the sequence of covariance matrices (Ry) is constructed recur-
sively according to the State Evolution (SE) equations

(Bayati, Montanari, Bolthausen, ... ~ 2010)



Let (Zl, 227 oo ) with D‘Z((Zl, Ceay Zk)) = N(O, Rk) and
(Z1,25,...) 1L (3,%).

Recursion:
R = Efy(%,3)?

Knowing Ry = Cov(Zy, ..., Zk), we have

Efi(Zk,3)fr-1(Ze—1,3) if€=2,... k+1

E[Zk1Z] =
Phiod { Efi(Zk, 3)fo(R, 3) if =1

= R



1" asymptotics: proof with AMP

Set o > 0 and a € R} to be specified later. Put
fo(x,a) = fi(x,a) =--- = f(x,a) = a(x + a);.

AMP algorithm

Xkr1 = aG(xx +a)y — azfyk(xk_l +a)y with

Yk = <8X(Xk + a)+> = <]lxk+a>0>

Key observation: Using an idea of [Donoho-Montanari'13],
[Montanari-Richard'16], we can show that (Zx, Zx11) in the SE equations
become more and more correlated:

Corr(Zy, Zk+1) —— 1,
k— o0

which implies that
Iimaslim7<xk+1’xk> =
koo i | x|
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Proof with AMP (cont’d)

Thus,
xk = aG(xx + a)y — a?yk(xk + a)4 + ek
where limy aslim, ||ex||?/n = 0. We rewrite this
Xk +a=aG(x +a)y — y(xk +a); +a+ex, or

—(x + a)- = aGxi + ) — (1 + a®y) (x + a)+ + a+ e, or

(xx +a)— a
— = G—1
1+ a2y 1+ a2y (6 +a)s +

in other words,

a_ L
l+a2y X

«

a
—eP(—% 61, —2 ).
(k + a)+ (1_'_0[2%( T+ a2y +5k)

Remember that
u, = LCP(BG —1,r)
Identifying the two, using LCP perturbation results + SE equations
= the theorem
11



A more involved interaction
matrix model




New interaction matrix model

Non-necessarily Gaussian, centered, variance profile, pairwise correlations,
and sparse

Yi = /ViXi

e EX; =0, EXZ =1 and (E|X;|¥)"* < ckn/2
e Elements of {Xj;, (Xj, Xji)i<j} are independent
o Corr(Xj, Xji) = 7j; € [—1,1] (correlation profile).
V = [v;] = 0 is the variance profile matrix. For K, 2> (log n)""1,
e # non-zero elements per row < Cst x K,
o vj < Cst/K,

e All row sums > Cst
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Ecological interpretation

e Couples of pairwise interactions are centered and independent

e Pairwise correlations specific to couples (/,), reminiscent of the
well-known elliptic model:
7ij = 1: often models competitive or mutualistic interactions
7jj = —1: predator-prey
7;; = 0: uncorrelated interactions

e Variance profile V: inhomogeneous interaction strengthes

e Sparsity: every species interacts with a small proportion, K,/n, of
other species
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Asymptotic behavior of "

No assumed structure on the variance profile or the correlation profile
matrices V = [V,J} and T = [TU}

Therefore, u“* has no reason to converge

However, we can show that there exists a deterministic sequence (u,,)
of probability measures that approximates p“* for large n

The parameters of a measure p,, will be obtained through the solution of
a large system of equations

With additional assumptions, this system can be reduced to two integral

equations
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Result: system of equations

Additional assumptions:
e r is deterministic
e limsup, [[(Y + YT)/2|| < 1 a.s. Conditions for this in terms of

matrices V and T can be deduced from literature, e.g.,
[Bandeira-Van Handel'16]

e Vand Q = [\/WTU}

n
have row sum norms < 1/4
1

ij=

System of equations

For each integer n > 0, let Z ~ A/(0, /,). The system of 2n equations
in (p.C) € R x [-1,1]"

p=Vdiag(l+()’E(V/po Z+r)}
¢ = diag(1 + ¢)Qdiag(1 + {)P[VP® Z +r > 0]

admits an unique solution.
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Result: ;“* ~ mixture of truncated Gaussians

Theorem [GHN’24]

Let & be the Gaussian vector
=[] =digl+Q) (PO Z+r)
i€[n]

and define the deterministic probability measure p, = % ((59)+),
where 6 is a uniformly distributed random variable on [n], independent
of Z. Then,

disty (', p,,) 250

n— o0

(distance in the space P,(R))

16



Proof: a new AMP algorithm

New AMP for the generalized elliptic sparse model with a variance profile.
Might be helpful in contexts other than ecology, e.g., in learning theory

Measurement matrix: W = S®Y/2 ) X, where

e X is a above (with a correlation profile)

e S =s;j] = 0 has same properties as V/ above:
For K, = (log n)"V1,

e # non-zero elements per row < Cst x K,
e s; < Cst/K,
e All row sums > Cst
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Algorithm

fo, f1, ... sequence of R? — R functions with sufficient regularity
conditions

Deterministic parameter vector a € R"” and initial value vector xg € R".

Algorithm:

Xk+1 = {XkJrL,} = ‘/ka(xk7 a) — diag (B (9)‘-/((X/<7 a)) fkfl(kal, a)

B = {m’ﬂj} and Ofx(xk, a) = {d%fk(xk,hai)]

iE[n].
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We define a centered Gaussian family (Z i)k>1,ic[n) through appropriate
DE equations (below)

Theorem

For each k > 1 and each continuous test function ¢ with quadratic
growth at most,

1 P
. > (@i, Xy xui) — B(ar, Zugy .y Zii)) —— 0

n—00
i€[n]

(amounts to asymptotic behavior of 2% in probability in the P,
space)

A combinatorial proof along the lines of [Bayati-Lelarge-Montanari'15]
building on the message passing structure of the algorithm.
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Thank you

Questions?



The DE equations for our model

Distribution of the centered Gaussian family (Z i)k>1,ic[n]-

The n sequences Z; = (Zi ;)k>1 are independent. The covariance
matrices Rk of the vectors Zk [Z1,is- ., Zk,] are defined recursively in
k as follows.

= Z S/[ﬂ)(X07/,a;)2 fori=1,...,n
Le[n]

leenR fori=1,...,n,

fb(XO/a )

K fl(lea )
HE=E | e, @) AlZuna) - flZia)|

fi(Zk,i, ai)

n
RE = § sigHE fori=1,...,n
/=1
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