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Hanski’s legacy: Metapopulation theory

“Mathematical models of metapopulation are
constructed in the hope that they will clarify our
thinking, reveal unexpected and significant consequences
of particular assumptions, and lead to interesting new
predictions that could be tested with observational and
experimental studies.”

– Ikka Hanski
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A world of fragmented habitats
Interactions between species and their habitat are crucial for biodiversity conservation and
protection of natural habitats.

Habitat are fragmented:
• Due to natural phenomena and land use by humans.
• Necessary migration for some species (birds, marine mammals).

Figure 1: Example of a forest in Cambodia - February 20, 1999, NASA

Clenet 3 / 43



A world of fragmented habitats
Interactions between species and their habitat are crucial for biodiversity conservation and
protection of natural habitats.

Habitat are fragmented:
• Due to natural phenomena and land use by humans.
• Necessary migration for some species (birds, marine mammals).

Figure 1: Example of a forest in Cambodia - February 20, 1999, NASA

Clenet 3 / 43



A world of fragmented habitats and temporal variations

(a) February 20, 1999 (b) February 5, 2017

Impacts of temporal habitat variations:

• Influence species persistence.

• Affect the movement of individuals, diseases, and disturbances.
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The often overlooked dimension of time

Metapopulation models are created to help understand how a population persists in a given
landscape.

• Stationary analyses and theories are insufficient.

• Need to integrate the temporal dimension into ecological networks.

Fundamental questions:

1 How does the temporal structure of the landscape or seasonal variations influence
population persistence?

2 How do temporal metrics provide insights into the dynamic nature of ecological systems
that stationary metrics might miss?
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Network science: a framework for ecological dynamics

Applying network science to ecological systems:

• SIS models: simulating disease spread in a given
contact structure.

• Metapopulation models: Incorporating spatial
structure.

• Temporal networks: Analyzing time-varying
interactions.

Inspired by physics-based methods
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Metapopulation: Levins model

Levins model1(1969): a simple model to explain the dy-
namic of a species in a patchy environment.

c

e
Call p(t) the proportion of patches occupied by the species of interest at time t and assume
that

1 an empty patch is colonized by the populations in other patches with rate cp(t) where c is
the colonization rate,

2 that occupied patches become empty at rate ep(t) where e is the extinction rate.

The proportion of patches occupied by the population at time t is:

dp(t)

dt
= cp(t)(1− p(t))− ep(t) .

Levins (1969), Bulletin of the Entomological Society of America, 15-3, 237–240
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A network of 56 habitat patches

Figure 3: Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands in Finland.
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Spatially realistic metapopulation model

Each patch (or node) is associated with a random variable Xi (t) whose state can be either
occupied Xi = 1 or empty Xi = 0.

Figure 4: State diagram in a graph with 4 nodes and the binary numbering of the states.

Problem: to describe all potential states, a Markov process with 2n states is necessary. The
transition matrix among all these states cannot be written in general.

Van Mieghem et al. (2009) IEEE/ACM Transactions on Networking 17-1, 1–14
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Spatially realistic metapopulation model

We are interested in describing pi (t) = P(Xi (t) = 1).

The dynamics of p(t) = (p1(t), . . . , pn(t)) is given by the set of n differential equations:

dpi (t)

dt
= c

n∑
j=1

SjiP(Xi (t) = 0 andXj(t) = 1)− epi (t) , ∀i ∈ [n] .

where S = (Sij)n×n is the connectivity matrix.

To approximate the solution, we employ an
individual-based approach, assuming independence between the states of different patches
(reasonable approximation for large, well-mixed systems).

P(Xi (t) = 0 andXj(t) = 1) ≈ (1− pi (t))pj(t) .

This method tracks the quasi-stable state of the underlying Markov process

dpi (t)

dt
= c

n∑
j=1

Sji (1− pi (t))pj(t)− epi (t) , ∀i ∈ [n] .
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Spatially realistic metapopulation model

dpi (t)

dt
= ci (p)(1− pi (t))− ei (p)pi (t) , ∀i ∈ [n] ,

where pi (t) is the probability that patch i is occupied at time t.

Colonization rate of an empty patch i :

ci (p) = c
∑
j ̸=i

Aj f (dij)pj ,

where:

c intrinsic colonization rate of
the species,

f kernel function,

dij distance between sites i and j ,

Ai area of site i .

Extinction rate of patch i :

ei (p) = e/Ai ,

where:

e extinction rate of the species,

Ai area of site i .

Hanski & Ovaskainen (2000) Nature 404, 755–758
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Definition of the model

Each element of the connectivity matrix (S = (Sij)n×n) indicates the connectivity from patch i
to patch j and is defined as:

Sij = Ai f (dij) .

We define the vector of extinction rates as:

e = (e1, . . . , en) = (e/A1, . . . , e/An) .

Ultimately, the dynamics of the probability of patch i being occupied over time can be
described by the following differential equation:

dpi (t)

dt
= c

∑
j ̸=i

Sjipj(t)(1− pi (t))− eipi (t) , ∀i ∈ [n] .
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Dynamics of the metapopulation model

Figure 5: Dynamics of the metapopulation model for 10 patches and 2 different connectivity matrices.
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Condition for the persistence of the metapopulation

dpi (t)

dt
= c

∑
j ̸=i

Sjipj(1− pi )− eipi . (1)

To compute the persistence threshold, one way is to linearize around the state where all species
vanish. One obtains

dp(t)
dt

≈ (cS⊤ − diag(e))p(t) + o(p(t)) .

The existence of a positive equilibrium p∗i > 0, is determined by the largest eigenvalue of the
matrix cST − diag(e). Specifically, persistence occurs if and only if:

ρ(cSTdiag(e)−1) > 1 .

This condition highlights the crucial role of local extinction rates in determining the overall
persistence of the metapopulation.
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The metapopulation capacity

When the extinction rate e is unique for each patch and the network structure S is fixed, we
recover the metapopulation capacity λM

λM = ρ(M) >
e

c
,

where Mij = AiAj f (dij), i ̸= j and Mii = 0, ∀i ∈ [n].
Hanski & Ovaskainen (2000) Nature 404, 755–758

• The condition can be derived via the Collatz-Wielandt formula and Perron Frobenius
theorem, given that the matrix S is nonnegative.

• In epidemiological systems, this threshold is referred to as the epidemic threshold.
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Discrete model of metapopulation

As in the continuous-time model, the problem may be analyzed as a model based on
probabilistic discrete-time Markov chains.

The discrete-time version of the dynamics of the probability of colonization is:

pi (t + 1) = (1− qi (t))(1− pi (t)) + (1− ei )pi (t) + ei (1− qi (t))pi (t)

where qi (t) =
∏

j [1− cSjipj(t)] the probability that patch i is not colonized by one of its
neighbors at time t.

Gómez (2010) Europhysics Letters 89-3, 38009.
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Discrete model of metapopulation

The equation can be written in the following form:

pi (t + 1) = 1− [1− (1− ei )pi (t))]
∏
j

[1− cSjipj(t)] . (2)

where:
e = (e1, . . . , en) = (e/A1, . . . , e/An)

and S is the connectivity matrix of the network given by

Sij = Ai f (dij) .

Note that the equilibrium of the system (2) is given by:

p∗i = 1− qi + (1− ei )p
∗
i qi ,

and p∗i = 0,∀i ∈ [n] is a solution.
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Metapopulation capacity
Let’s analyze the behavior around the equilibrium point, where p∗i = 0,∀i ∈ [n].

Linearize the equation around p∗i = 0:

pi (t + 1) = (1− ei )pi (t) + c
∑
j

Sjipj(t) + O(p2i ).

This is due to the fact that when pi is close to zero, it results to the approximation
(1− a)(1− b) = 1− a− b when a ≪ 1 and b ≪ 1:∏

j

[1− cSjipj(t)] ≈ 1−
∑
j

cSjipj(t) .

The behavior of the model around pi (t) ≈ 0 is similar to the continuous case. In matrix form,
this can be rewritten as

p(t + 1) = (diag(e) + cS⊤)p(t) .

As a result, the metapopulation persist if and only if:

ρ(cSTdiag(e−1)) > 1 .
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Introduction to temporal networks

Temporal networks: networks where connections between nodes can change over time.

Valdano et al. (2015), Physical Review X, 5, 021005
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Annealed vs. Quenched regimes

Annealed Regime Quenched Regime

• Rapid network dynamics compared to
metapopulation dynamics.

• Relevant network properties: average
adjacency matrix, degree distribution.

• Degree-based mean-field theory
(DBMF): Assumes statistical
equivalence of nodes with the same
degree.

• Threshold computation: Based on
average connectivity and connectivity
fluctuations.

• Slow network dynamics compared to
metapopulation dynamics.

• Fixed network structure (connectivity
matrix S).

• Individual-Based Mean-Field
Theory: Tracks the occupation
probability of each node.

• Threshold computation:
Determined by the eigenvalues of the
network adjacency matrix.
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Static vs. Temporal network

• Static network: Connectivity is crucial as it
determines colonization pathways.

• Temporal network: The timing of connections is
essential. The sequence of connections over time
must be considered.

Conclusion: the analysis of temporal networks more
intricate.

Valdano (2015), Computing the vulnerability of time-evolving networks to infections.
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The temporal metapopulation model

Let us assume that the size of each patch i , A
(t)
i and the distances between patches d

(t)
ij are

time-dependent.

Temporal metapopulation model is described by:

pi (t + 1) = 1− [1− (1− e
(t)
i )pi (t))]

∏
j

[1− cS
(t)
ji pj(t)], ∀i ∈ [n] ,

where
e(t) = (e

(t)
1 , . . . , e(t)n ) = (e/(A

(t)
1 ), . . . , e/(A(t)

n )) ,

and S (t) is the connectivity matrix at time t of the network given by

S
(t)
ij = A

(t)
i f (d

(t)
ij ) .
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Assumptions and limitations

• Time-Scale Considerations:
• Comparable timescales for fragmentation and ecological dynamics.
• Intermediate regime between annealed and quenched regimes.

• Boundary Conditions:
• Periodic boundary conditions for network dynamics.
• Ensures asymptotic solution for generic temporal sequences.

• Impact of Temporal Dynamics:
• As T is an arbitrary parameter, this does not affect the model overall generality.
• Estimation of epidemic/persistence threshold primarily influenced by short-term dynamics.
• Findings from Valdano et al. support this observation.

Valdano et al. (2015), Physical Review X, 5, 021005
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Multilayer representation of temporal networks

Snapshot representation of temporal network → the tensor representation of the weighted
multilayer network.

M̂ ts
ij = δt,s+1[δij +M

(t)
ij ]

M̂ ts
ij is the entry of a fourth order tensor M̂, called multilayer adjacency tensor and represents

the connection strength between node i in layer t and node j in layer s where i , j ∈ [n] and
t, s ∈ [T ].
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Multilayer representation of temporal networks

Ordinal coupling: linking each node at time t with its corresponding node at time t + 1.

Representation of the extinction process, occurring at a rate of ei for patch i between time
steps t and t + 1

Valdano et al. (2015), Physical Review X, 5, 021005
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Multilayer representation of temporal networks

Non-diagonal coupling: introduces connections between different nodes across consecutive
layers.
Representation of the colonization process, where individuals can disperse from one patch to
another.

A link is established between node j at time t and node i at time t + 1 with a strength of cSji .

Valdano et al. (2015), Physical Review X, 5, 021005
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Multilayer networks in ecology

In these toy examples, layers are represents different interaction types: trophic, non-trophic

Pilosof et al. (2017), Nature Ecology & Evolution, 1-4, 0101

Clenet 27 / 43



Multilayer for competitive metacommunity model

• Stable coexistence becomes possible in sufficiently heterogeneous environments.
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Multilayer representation of temporal networks

Representation of the temporal metapopulation model as a tensor network incorporating both
the colonization and extinction processes:

M̂ ts
ij = δt,s+1[(1− e

(t)
i )δij + cS

(t)
ij ], with S

(t)
ij = A

(t)
i f (d

(t)
ij ) .

M provide all the information of the processes and the landscape structure through time.

Valdano et al. (2015), Physical Review X, 5, 021005
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Supra-adjacency matrix formulation

Use the supra-adjacency matrix formulation by mapping (i , t) → α = nt + i where α ∈ [nT ]
which gives:

M̂ =


0 (1− e(1))I + cS (1) 0 · · · 0

0 0 (1− e(2))I + cS (2) · · · 0
...

...
. . .

...
...

0 0 0 · · · (1− e(T−1))I + cS (T−1)

(1− e(T ))I + cS (T ) 0 0 · · · 0

 ,

where M̂ is a supra-adjacency matrix of size nT × nT .
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Asymptotic behavior of the dynamical system

Given the state vector p̂α(τ) of size nT which represent the probability of each node to be
occupied at each time step t included in a 1-period interval [τT , (τ + 1)T ].

The dynamics of p̂α(τ) is given by the Markov process:

p̂α(τ + 1) = 1−
nT∏
β

[1− M̂β,αp̂β(τ)] .

The T -periodic asymptotic state of model given by:

p̂∗α = 1−
nT∏
β

[1− M̂β,αp̂
∗
β] .
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Asymptotic behavior of the dynamical system

From this by linearizing the system around p̂∗α = 0, we recover the system:

p̂α(τ + 1) =
∑
β

M̂βαp̂β(τ) ,

which is formally
p̂(τ + 1) = M̂p̂(τ) ,

where we recover the necessary and sufficient condition for the asymptotic persistence of the
metapopulation:

ρ(M̂) > 1 .
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Temporal metapopulation capacity

Temporal metapopulation capacity: the ability of a metapopulation to persist over time,
taking into account the dynamic processes of local extinctions and recolonization of habitat
patches and the changes of the structure of the landscape.

The temporal metapopulation capacity is describe by the threshold condition

ρ(M̂) = 1 ,

where M̂ is the supra-adjacency matrix.

The block structure of the supra-adjacency matrix permits to simplify the computation of the
spectral radius of M̂:

ρ(M̂) = ρ(P)1/T ,

where

P =
T∏
t=1

(1− diag(e(t)) + cS (t)) .
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Practical applications

The temporal 
metapopulation capacity

Seasonal Habitat      
Dynamics

Changes in 
Agricultural 
Landscapes

Boreal forest fires and 
constant impact on 

spatial dynamics

Migration and drastic 
habitat changes

Role of ephemeral 
habitats
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Perspective 1: Migratory network

Migratory network for Tree Swallows showing breeding, autumn stopover, and non-breeding
nodes:

(a) Migratory network (b) A tree swallow

Knight et al. (2018), Ecological Monographs, 88-3, 445–460
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Perspective 1: A toy model

Summer WinterSpring Autumn
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Perspective 1: Preliminary simulations

(a) Colonization rate c = 0.2

(b) Colonization rate c = 0.4
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Perspective 1: Preliminary simulations
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Perspective 2: Random matrix theory

The supra-adjacency matrix M:

M =


0 (1− e(1))I + cS (1) 0 · · · 0

0 0 (1− e(2))I + cS (2) · · · 0
...

...
. . .

...
...

0 0 0 · · · (1− e(T−1))I + cS (T−1)

(1− e(T ))I + cS (T ) 0 0 · · · 0

 .
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Perspective 2: Random matrix theory
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Perspective 2: Random matrix theory

Framework:

• Random landscape using random matrices theory.

• Dispersal kernel matrix belongs to the class of
Euclidean random matrices (in particular Random
Geometric Graphs).

Results:

• Significance of hubs in maintaining the persistence of the metapopulation.

• The density of habitat patches, their variability, the shape of the dispersal kernel, and the
dimensionality of the landscape all play crucial roles in determining the fate of the
metapopulation.
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Take-Home Message

• Climate change, wildfires, human activities, and seasonal variations in habitat all
underscore the importance of considering the temporal dimension of ecosystems.

• Needs of empirical and theoretical ecologists.

• Develops a theoretical framework to quantify temporal dynamics of metapopulations,
ensuring resilient ecosystems.

• New metric: the “temporal metapopulation capacity” to quantify the ability of a
metapopulation to persist in a dynamically changing landscape.

Longer-term perspectives:

• Metacommunity ecology: Investigate how species interactions and dispersal shape
community assembly and dynamics at multiple spatial scales.

• Time-varying interaction networks: Analyze how changes in species interactions over time
influence ecological patterns and processes.
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Thank you for your attention!
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