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Complex dynamical systems /10
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This talk: a counting problem

Model of high-dimensional (many species) ecosystem dynamics with random interactions

n(t)=species abundance

dn(t)

—— = F,(n(?), d) a = randomness

dt
1,---,D>1

l

Counting problem: how many equilibria n* such that F(n*,4) =0 foralli=1,---,D

How many, typically: with highest probability (P — 1 when D — o0)

High-dimensional system of non-linear random equations: can have many solutions.
If many: how diverse, how stable, how relevant for dynamics?
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Model for ecosystems dynamics: rGLVE s

rGLVE - random Generalized Lotka-Volterra equations for many interacting species

n(t) = (rescaled) abundance of species i

dn(t)
dt

D
=n() |1=n0 - ) ayn®

= i=1,,D> 1

Random pairwise interactions. a;; Gaussian, correlated only with a;

2
. . . H o
species-species interactions <0‘lj> = <aijakl>c = 3 <5ik5ﬂ +y 5i15jk> Reciprocal interactions: y =1

K./ aji D

Three parameters: average interaction strength u, variability of interactions o, asymmetry y

Several talks on this model, already! In this talk:

B A large-D scaling: all terms in equation are O(1) when D — . Vs S. Allesina

m No sparsity: all-to-all interactions. No spatial eterogeneities. Vs W. Hachewm, F. de Laender

m Gaussian interactions. No time dependent couplings (“quenched randomness”). vs s. Azaele



A dynamical transition oo

dny(1) A &
= n(0) [ 1=n) = Ym0 + LD 3 ani(o) (aya) = 830y +7 518
j=1 j=1

For D large: two different dynamical phases separated by a transition
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A dynamical transition oo

dny(t) 2 6 L
T n(t) |1 —n(r) - % Z ni(r) + ﬁ Z a;ni(1) (aar) = 645 + v 6,0

j=1 j=1

For D large: two different dynamical phases separated by a transition
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Simulation of dynamics from: Roy, Biroli, Cammarota 2019

Similar transitions in many large-D models of agents with random interactions & non-linearity

Neural networks: Sompolinsky, Crisanti, Sommers 1988
Ecosystems: Rieger 1989 Opper, Diederich 1991  Opper, Diederich 1999

Game theory: Berg, Weigt 1999  Galla, Farmer 2013 Garnier-Brun, Benzaquen, Ciliberti, Bouchaud 2021



stationary, unique equilibrium
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Some questions & some tools

Stationary regime:
properties of the equilibrium?

Loss of stability of equilibrium?

Loss of uniqueness: emergence
of multiple, competing
equilibria, i.e. glassiness? Which

properties?

Species turnover

Rescuing, intermittency

Chaotic dynamics?
Slow dynamics with aging?

Fundamental mechanisms?

cavity, AMP
review: Barbier, Arnoldi {017

talk W. Hachem

(non)-linear response &
its breakdown

Methods from glasses
[replica method|]
& random matrix theory
[Kac-Rice methods|

Simulations dynamics

Effective single-particle

dynamical processes:
DMFT

review: Cugliandolo 2023
Galla 2084

talk sS. Azaele
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self-consistent large-D arguments:



Some questions & some tools
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stationary, unique equilibrium

10 Stationary regime:

08 e properties of the equilibrium?
:%0.6
~§-0.4
oW}

= 4T_ R T Loss of stability of equilibrium?

This talk

transition o,

Loss of uniqueness: emergence
q g Methods from glasses

of multiple, competing [replica method]

equilibria, i.e. glassiness? Which & random matrix theory

non-stationary dynamics properties? [Kac-Rice methods]

Species turnover

Populations

Rescuing, intermittency

Chaotic dynamics?
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Slow dynamics with aging?

Fundamental mechanisms?
variability o



stationary, unique equilibrium

1.01

Populations
o o
> @

S
'S

e
o

e
=}

0 20 40 60 80 100

transition o,

non-stationary dynamics

Populations

0 100 200 300 400 500

variability o

Plan of the rest of the talk

B When the equilibrium is unique: self-consistency, diversity, stability

m Beyond the transition I: the high-D math tools

m Beyond the transition Il: equilibria for uncorrelated interactions (y = 0)
m Beyond the transition Ill: tuning the non-reciprocity

m Work in progress & summary



When the equilibrium is unique.




Properties of an equilibrium

: . ]
negative definite for n*, n]* >0

Invasion

fluctuation

n; = n; + on;

7/19
1t
o jo-2h Equilibrium: vector n* = (n, -+, np) such that for all i = 1,---, D
10744\
o 107%7 1\ \ d D D
o \ nt) 7 c A
3 a; =n, l—ni—Ban+—Zal-jnj+€i =n; f(n,a) =0
0 200 400 600 800 1000 g =1 VD n* e=0 5 n* e=0
time :
effective growth rates/forces
Arnoulx de Pirey, Bunin 2024
Two notions of stability of the equilibrium. Equlibrium is a random vector. For large D, has
“saturation” A properties that are typical (— concentrating):
m Un-invadibility ~ f(n*,a) <0 for n* =0
D
of.(n*, 4) L 1 . :
m Linear stability matrix M = fla— m Diversity ¢ = ) 2 L0 - coexisting species
n; .

=1
1 2
B Abundance m = Z n*

N 1 &
m Self-similarity = — Z n¥12
1=l

1
m Suceptibility y = Z l



Unique equilibrium: self-consistent “cavity” analysis /
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(i) assume unique, un-invadable stable equilibrium n = (n, ---,ny) with D species and given g, m, y, ¢ .

(ii) add one species: 0 — ny. When D large, small perturbation that should modify weakly the equilibrium

Assume other species react linearly: n; = n;, + on,

Derive an equation for n, at new equilibrium as a function of parameters of old equilibrium

1 —,um+m0\/q_ZG
ny = max 4 O,

(1 =ypm

new
species
equilibrium new equilibrium

Z = standard Gaussian

(iii) impose self-consistency: new species behaves statistically like all others — | closed equations for m, ¢, y, g.

Lotka-Volterra/replicator:  Diederich, Opper 1989  Bunin s01v  Barbier Arnoldi 8017
MacArthur:  Advani, Bunin, Mehta 2017  Blumenthal, Rocks, Mehta 8024
Dynamical version (DMFT):  Opper, Diederich 1991  Galla 8006 Galla 8018 Roy, Biroli, Cammarota K019




Transition: instability and marginality 9/19

Consistency of the cavity derivation can be checked: breaks down at ¢, = \/5(1 + L

Notice: cavity equations can still be solved beyond this boundary: meaning?

UNIQUE Perturb infinitesimally all coexisting species: n; = n; + €¢An,, An; random
STABLE sny \
EQUILIBRIUM S - 0

a?y) > Boundary of stability: <<—6€ ) ) > o.(y) = \/5(1 + )7

What happens to the equilibrium?  Becomes marginally stable at 6,.(y)

. . . df(n*, a) _
_____ Linear stability matrix M;; = N has a spectrum touching zero

e N n
J

% stability &)

_ I+
supp[p(4)] — evalue density of M/\/B M! T >
" perturbation 52 -1 | R
ni Ed ni + 5ni COV <al-jakl> = 3 <5ik5jl + Y 5i15jk>

1
c2(1 + y)?

Diversity and stability are related by May stability bound: lineraly stable equilibria for ¢ < ¢,y =
Bound saturated at transition. R. May 1972



Beyond the transition |

The high-D math tools.



What we compute: the complexity
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D D . . . .
o Typical properties are now distributed over equilibria
n l—ni—ﬁZn-+—Zai-n~ =n, f(n)=0 yP Prop d
D j \/5 T 5
J=1 J=1 i : a 1

m Diversity ¢p* = 5 Zl 1nf‘>0
Equilibria: n% = (1, ---, np) D
B Abundance m® = D1 Z n’

i=1

D

Effective growth rates: % = (f;(n%), -+, f,(n%)
© ! P m Similarity q*’ = D71 Z nl.“nl.ﬁ

i=1
Un-invadibility: f(n%*) <0 if n*=0

1

m More ...

Computer Physics Communications 121-122 (1999) 141-144

Replicator dynamics

Do o A Qs : ~h b
o > 6., number of equilibria ./ scales as /" ~ O(eP) Manfred Opper® ", Sigurd Diederich
Concentration of the |Og: It is possible to calculate the average of the number
. N of locally stable fixed point solutions. We can show
(quenched) that -1
: log/V_ . E[log /] - ] heret = 6~ and 1 —y
D-oc D D—coo 1 =0 foru > u.andall n,
lim Nln(N)={>0 foru <ucatn=1, 4
the log makes a difference! N=oo <0 foru <ucatn=0.

talk +H. Bewis’cg



The Kac-Rice formula & replicas

Number /' (¢) of equilibria n* such that f(n*) =0 and ®(n*) = ¢ (arbitrary constraints)

is a random variable with scaling: ./ (¢p) ~ ¢? =P+,

The “Kac-Rice formula” gives a recipe to compute the first moment of A/ (¢)

dn P, (f=0)E, [‘det<0j;(n)> Yows Hf: 0}
n

7
Extracting the large-D limit of this, we obtain the “annealed complexity”

E[AV ()] = J

M p

Sy = fim JOELV@)]

D— oo

Exponentially-large quantities: asymptotics of the average is not asymptotics of the typical value!

To characterize typical values, rather compute the “quenched complexity”

Y2 = lim Ellog /] = lim lim ELATI -1 Replica Trick!

D— oo D D— oo m—0 Dm
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A high-D variational problem
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The Kac-Rice formulas for higher moments:

m m of(n®
ELA™()] =J [Tan® 2o ({9 = 0}) Eqe [H det< ﬁ(nac)))
MEB" =1 k=1 o

— problems of coupled random matrices

)(CD(n(k))=(,b H {f(k) = 0}]

The essence of the procedure: map into a variational problem in large-D:

m
E[A/™($)] = [ H dq,, dm, dp P damapdt= o gDmellgz,mp]

a<b<=1 \ /

mean-field dimensionality values optimizing
reduction the action

Result: coupled, self-consistent equations for parameters describing
equilibria (abundance, similarity, effective growth rates)

“Replicated Kac-Rice” for quenched complexities: VR, Ben Arous, Biroli, Cammarota 2019



Beyond the transition |l

Equilibria for uncorrelated interactions



The complexity of equilibria: the results
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Ellog A4
$0(¢) = lim [log /()]
D— oo D y = O
0.15 u arbitrary
0.1
0.05

» Complexity independent of y. Parameters describing equilibria like abundance m, similarity g, depend on p

» It vanishes in unique equilibrium phase at a single ¢: same value predicted by cavity calculation

» For 0 > o,, exponentially-many un-invadable equilibria with a continuous distribution of diversity: we know
the maximal and minimal diversity one can expect

» For 6 > o,, all uninvadable equilibria are linearly unstable: ¢ > ¢y,



Quenched, Annealed, Cavity “matching point”
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May stability bound ~ UNIQUE . MULTIPLE
EQUILIBRIUM | EQUILIBRIA
v @ *x—>
0.08 F—+— - |
=0, o=5 g -
" = Quenched
0.06 - R
.. = Annealed
S 0041 -
N I .
- < (.., = solution of cavity _
- equations for 6 > 6.(y) '
000k f peee s foeee oo oo
¢May ba Dcav 0.25 Pmax 0.45 dp 0.6

¢= diversity- fraction of non-extinct species

» Cavity calculation still picks up equilibria, but not the most numerous



Quenched, Annealed, Cavity “matching point”
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0.10 |
v=0, 0=4, u=30
0.08r- — g1 quenched 010t =
May stability bound ~UNIQUE . MULTIPLE e
EQUILIBRIUM | EQUILIBRIA __0.06F = q0 -
) S L
v @ >—> =
0.08 1 i | 0.04 - _
y=0, o=5 o 1 0.02 i
0 06- — Quenched i 1 ]
: L — Annealed 000 I ! 9;& | I 1 Tq
¢a ¢cav 0.25 ¢max 0.45 ¢b
S 0.047 . ¢
- [ . I 0.10 i i 5
. ) \ | ; — Quenched y=0, =4, u=30
I <4+ — s T L i —
o (., = solution of cavity T ops | oot :
- equations for 6 > 6.(y) 008k :
000k foof PSSP %007? ‘
¢May ba Pcav 0.25 Pmax 0.45 (0] 0.6 0.06 — ]
¢= diversity- fraction of non-extinct species 0.05 - p
0.04 .
| | | | | |
¢a ¢cav 0 . 2 5 ¢max O .45 ¢b
¢

» Cavity calculation still picks up equilibria, but not the most numerous

» Equilibria with more coexisting species have lower average abundance & are less similar to each others

» Order parameters do depend on y: as u increases, m grows towards “unbounded” phase



Average vs typical
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I T T T I T T T ] T T T l T T T I
® Pmax(ann)

® Pmax(que)

0.8
bcav

06— - * PMay _

> Diversity of most numerous equilibria not captured by annealed approximation

» At 0 ~ o,: annealed gives exponentially many equilibria at diversity were there is none!

Similar phenomenology in econophysics models:  Garnier-Brun, Benzaquen, Ciliberti, Bouchaud 2081



Beyond the transition I11

Tuning non-reciprocity



A special limit: conservative dynamics (y = 1)
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Symmetric interactions (y = 1) the model is conservative: like a spin-glass model with random energy &(n, &).

dt

an; _ n; fin, @) + kE(t) = — 0, E, @) + k(1)

Stable equilibria are minima of &(n, @): Can be characterized with spin-glasses techniques for metastability.

Fya) =log Z4a) = log[ dn e PE®A) f— o0

M p

o > o,: many local minima. As in spin glasses, many

are marginally stable: diversity saturates May
bound, ¢ = Py,

spectra of stability matrix p(4)

] —
0 0
stable marginally stable

Without noise (x = 0): Biroli, Bunin, Cammarota 2018
With noise (x > 0):  Altieri, Roy, Cammarota, Biroli 2021

and “tilded” versions

In spin-glass models: long-time dynamics converges to
marginally stable minima; convergence slow, aging.

Cugliandolo, Kurchan 1995 selection principle for equilibria!

Symmetric rGLV: convergence to equilibria with ¢ = ¢,
with aging

Roy, Biroli, Bunin, Cammarota 019



The case y # 0: average number
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y=0.6, 0=8

0.00595  0.00603 ¢May 0.00617

i
0.14 -
0.12°F
0.10 ¢
\.% 0.08 ¢ 0.00025 |
< i
N 0.06 - 0,00020 f
i 0.00015 F
0.04 - 0.00010 |
[ 0.00005 f
0.02 — 0.00000
e 0.00fh .
T0.4 0.5 0.6 0.7 0.8 0.9 1.0 PMay 0.1 0.2

» Transition at y, = 0.373: for y < y,, all equilibria are unstable

» For y >y, at 6 > oy some stable and marginally stable equilibria exist at small ¢

0.3 0.4 0.5
¢

The same “absolute instability transition” in the average number shown for other models:

Fyodorov 2016, Ben Arous, Fyodorov, Khoruzhenko 2021

What about typical number? — work in progress.

0.6



Summing up




Follow-ups and work in progress
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B Complexity of invadable equilibria, might be relevant for dynamics

Arnoulx de Pirey, Bunin 084

4 invadable

equilibrium?|

Populations

B Quenched complexity for general y: “absolute instability transition”

beyond the annealed approximation

Ben Arous, Fyodorov, Khoruzhenko 2021

B Chaotic dynamics for non-reciprocal interactions observed in several models

Roy, Biroli, Cammarota 2019
Blumenthal, Rocks, Mehta PRL 132, 2024

0.0075
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Lyapunov exponent computed explicitly in neural-network models

10°
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0.0025 |
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Sompolinsky, Crisanti, Sommers PRL €1, 1988

(maximal Lyapunov exponent)
Mean abs val final derivs

mii .

. —0.0025 107
’<

Relations between complexity and Lyapunov
Wainrib, Toboul, PRL 110, 28013

L |
0.4 06 ot 08
p (interaction reciprocity)
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V. Ros, F. Roy, G. Biroli, G. Bunin and A. Turner , Physical Review Letters 130, 257401 (2023)
V. Ros, F. Roy, G. Biroli, G. Bunin, J. Phys. A: Math. Theor. 566 $060038J (2083)

Summary results. oro

Equilibria of rGLVE with independent (y = 0), non-reciprocal interactions

B Un-invadable, linearly stable equilibria do not exist
B Exponentially many un-invadable, linearly unstable equilibria
B Diversity correlates negatively with abundance & similarity

B We know the range in diversity and abundance

More technically

B Computation of quenched compexity of equillibria for non-conservative
models with non-reciprocal interactions

B Quenched matter: the average can be a very poor indicator

B Cavity calculation makes sense beyond its stability boundary

References

Thank you.



