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This talk: a counting problem

Model of high-dimensional (many species) ecosystem dynamics with random interactions 

dni(t)
dt

= Fi(n(t), ̂a)
 =species abundanceni(t)

  = randomnesŝa

 i = 1,⋯, D ≫ 1

Counting problem: how many equilibria   such that   for all n* Fi(n*, ̂a) = 0 i = 1,⋯, D

High-dimensional system of non-linear random equations: can have many solutions.

How many, typically: with highest probability  (   when ) ℙ → 1 D → ∞

If many: how diverse, how stable, how relevant for dynamics?
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rGLVE - random Generalized Lotka-Volterra equations for many interacting species

Model for ecosystems dynamics: rGLVE

 i = 1,⋯, D ≫ 1

dni(t)
dt

= ni(t) 1 − ni(t) −
D

∑
j=1

αijnj(t)
(rescaled) abundance of species ni(t) = i

⟨αij⟩ =
μ
D ⟨αijαkl⟩c =

σ2

D (δikδjl + γ δilδjk)

Random pairwise interactions.   Gaussian, correlated only with αij αji

Reciprocal interactions:  γ = 1
αji

αij

species-species interactions

  No sparsity: all-to-all interactions. No spatial eterogeneities.◼

  A large-D scaling: all terms in equation are  when .◼ 𝒪(1) D → ∞

  Gaussian interactions. No time dependent couplings (“quenched randomness”).◼

Three parameters: average interaction strength , variability of interactions , asymmetry    μ σ γ
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Several talks on this model, already! In this talk:

vs S. Allesina

vs S. Azaele

vs W. Hachem, F. de Laender



For  large: two different dynamical phases separated by a transition D

dni(t)
dt

= ni(t) 1 − ni(t) −
μ
D

D

∑
j=1

nj(t) +
σ

D

D

∑
j=1

aijnj(t)

A dynamical transition

⟨aijakl⟩ = δikδjl + γ δilδjk
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Bunin 2017
Phase diagram from



For  large: two different dynamical phases separated by a transition D

dni(t)
dt

= ni(t) 1 − ni(t) −
μ
D

D

∑
j=1

nj(t) +
σ

D

D

∑
j=1

aijnj(t)

A dynamical transition

⟨aijakl⟩ = δikδjl + γ δilδjk

Roy, Biroli, Cammarota 2019 

stationary, unique equilibrium non-stationary dynamics

 - variabilityσσc =
2

1 + γ

Simulation of dynamics from:
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Similar transitions in many large-  models of agents with random interactions & non-linearityD

Neural networks: Sompolinsky, Crisanti, Sommers 1988
Rieger 1989Ecosystems:

Game theory: Berg, Weigt 1999 Galla, Farmer 2013

Opper, Diederich 1991 Opper, Diederich 1999

Garnier-Brun, Benzaquen, Ciliberti, Bouchaud 2021 



Stationary regime:  
properties of the equilibrium?

Loss of stability of equilibrium? 

Loss of uniqueness: emergence 
of multiple, competing 
equilibria, i.e. glassiness? Which 
properties?

Chaotic dynamics?
Slow dynamics with aging?
Fundamental mechanisms?

Species turnover  

 Some questions & some tools

Rescuing, intermittency

self-consistent large-  arguments: 
cavity, AMP  

review: Barbier, Arnoldi 2017 

D

(non)-linear response & 
 its breakdown

 Methods from glasses 
[replica method]  

& random matrix theory 
[Kac-Rice methods]

Effective single-particle  
dynamical processes: 

DMFT 
review: Cugliandolo 2023 

Galla 2023 

Simulations dynamics

stationary, unique equilibrium 

non-stationary dynamics

variability σ

transition σc
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talk W. Hachem

 talk S. Azaele

Roy, Biroli, Cammarota 2019 
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…

This talk



Plan of the rest of the talk

 When the equilibrium is unique: self-consistency, diversity, stability◼

 Beyond the transition II: equilibria for uncorrelated interactions ◼ (γ = 0)

 Beyond the transition III: tuning the non-reciprocity◼

 Work in progress & summary ◼

stationary, unique equilibrium 

variability σ

transition σc

non-stationary dynamics

 Beyond the transition I: the high-D math tools◼



When the equilibrium is unique.



Equilibrium: vector  such that for all n* = (n1, ⋯, nD) i = 1,⋯, D

 Diversity◼ ϕ =
1
D

D

∑
i=1

1n*i >0 - coexisting species

 Abundance ◼ m =
1
D

D

∑
i=1

n*i

Properties of an equilibrium

 Self-similarity◼ q =
1
D

D

∑
i=1

[n*i ]2

χ =
1
D

D

∑
i=1

dn*i
dϵi ϵ=0

  Suceptibility◼

effective growth rates/forces
time

po
pu

la
tio

ns

Arnoulx de Pirey, Bunin 2024 

dni(t)
dt

= ni 1 − ni −
μ
D

D

∑
j=1

nj +
σ

D

D

∑
j=1

aijnj + ϵi
n*,ϵ=0

= ni fi(n, ̂a)
n*,ϵ=0

= 0

Equlibrium is a random vector. For large , has 
properties that are typical (  concentrating):

D
→
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 Un-invadibility◼

 Linear stability matrix◼

   for   fi(n*, ̂a) < 0 n*i = 0

Mij =
∂fi(n*, ̂a)

∂nj

Two notions of stability of the equilibrium.

invasion  

fluctuation 
 ni → ni + δni

negative definite for   n*i , n*j > 0

“saturation”



(i) assume unique, un-invadable stable equilibrium    with  species and given  n = (n1, ⋯, nD) D q, m, χ, ϕ .

ni = ni/0 + δniAssume other species react linearly:

(iii) impose self-consistency: new species behaves statistically like all others   closed equations for , , , .→ m ϕ χ q

n0 = max {0,
1 − μm + mσ q ZG

(1 − γχ)m }
standard GaussianZG =

Unique equilibrium: self-consistent “cavity” analysis

(ii) add one species: . When  large, small perturbation that should modify weakly the equilibrium0 → n0 D

equilibrium

new 
species

+ =

new equilibrium

Derive an equation for  at new equilibrium as a function of parameters of old equilibriumn0

Lotka-Volterra/replicator: 
MacArthur: 
Dynamical version (DMFT): 

Bunin 2017 Barbier Arnoldi 2017
Advani, Bunin, Mehta 2017

Roy, Biroli, Cammarota 2019 Opper, Diederich 1991

Diederich, Opper 1989

Galla 2006 Galla 2018
Blumenthal, Rocks, Mehta 2024
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Transition: instability and marginality

Diversity and stability are related by May stability bound: lineraly stable equilibria for   ϕ < ϕMay =
1

σ2(1 + γ)2

ℜλ

ℑλ
 — evalue density of supp[ρ(λ)] M/ D

ϕσ(1 + γ)

−1

R. May 1972

Cov (αijαkl) =
σ2

D (δikδjl + γ δilδjk)

Perturb infinitesimally all coexisting species: ,      randomni → ni + ϵΔni Δni

Boundary of stability: ⟨( δn0

δϵ )
2

⟩ → ∞

Notice: cavity equations can still be solved beyond this boundary: meaning? 

σc(γ) = 2(1 + γ)−1

Becomes marginally stable at σc(γ)

Consistency of the cavity derivation can be checked: breaks down at . σc = 2(1 + γ)−1

What happens to the equilibrium?

Linear stability matrix Mij =
∂fi(n*, ̂a)

∂nj
has a spectrum touching zero

perturbation 
 ni → ni + δni

stability

Bound saturated at transition.

UNIQUE  
STABLE 
EQUILIBRIUM

σc(γ)
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Beyond the transition I
The high-D math tools.



What we compute: the complexity

, number of equilibria  scales as σ > σc 𝒩 𝒩 ∼ O(eD)

nα = (nα
1 , ⋯, nα

D)

fα = ( f1(nα), ⋯, fD(nα)

Equilibria:

Un-invadibility:      if    fi(nα) < 0 nα
i = 0

Effective growth rates:

ni 1 − ni −
μ
D

D

∑
j=1

nj +
σ

D

D

∑
j=1

aijnj = ni fi(n) = 0
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here and  u → σ−1 η → γlim
D→∞

log 𝒩
D

= lim
D→∞

𝔼[log 𝒩]
D

≡ Σ
“(quenched)  
complexity”

Concentration of the log:

mα = D−1
D

∑
i=1

nα
i

qαβ = D−1
D

∑
i=1

nα
i nβ

i

Typical properties are now distributed over equilibria 

 Abundance ◼

 Similarity◼

  More ◼

 Diversity◼ ϕα =
1
D

D

∑
i=1

1nα
i >0

…..

 talk H. Benisty
the log makes a difference!



 The Kac-Rice formula & replicas

Number  of equilibria  such that   and  (arbitrary constraints) 
is a random variable with scaling: .

𝒩(ϕ) n* f(n*) = 0 Φ(n*) = ϕ
𝒩(ϕ) ∼ eD Σ(ϕ)+o(D)

The “Kac-Rice formula” gives a recipe to compute the first moment of 𝒩(ϕ)

Extracting the large-  limit of this, we obtain the “annealed complexity”D

ΣA(ϕ) = lim
D→∞

log 𝔼[𝒩(ϕ)]
D

𝔼[𝒩(ϕ)] = ∫ℳD

dn 𝒫n (f = 0) 𝔼n det ( ∂fi(n)
∂nj ) χΦ(n)=ϕ f = 0

To characterize typical values, rather compute the “quenched complexity”

ΣQ = lim
D→∞

𝔼[log 𝒩]
D

= lim
D→∞

lim
m→0

𝔼[𝒩m] − 1
Dm

Replica Trick!

Exponentially-large quantities: asymptotics of the average is not asymptotics of the typical value!
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A high-D variational problem

The Kac-Rice formulas for higher moments:

𝔼[𝒩m(ϕ)] = ∫ℳ⊗m
D

m

∏
k=1

dn(k) 𝒫{n(k)} ({f(k) = 0}) 𝔼{n(k)} [
m

∏
k=1

det ( ∂fi(n(k))
∂n(k)

j ) χΦ(n(k))=ϕ {f(k) = 0}]

The essence of the procedure: map into a variational problem in large- :D

Result: coupled, self-consistent equations for parameters describing 
equilibria (abundance, similarity, effective growth rates)

“Replicated Kac-Rice” for quenched complexities: VR, Ben Arous, Biroli, Cammarota 2019 

𝔼[𝒩m(ϕ)] = ∫
m

∏
a<b<=1

dqab dma dpaeDm𝒜[qab,ma,pa]+⋯ ∼ eDm𝒜[q*ab,m*a ,p*a ]

values optimizing 
the action 

mean-field dimensionality 
reduction 

 problems of coupled random matrices→
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Beyond the transition II
Equilibria for uncorrelated interactions



‣ Complexity independent of . Parameters describing equilibria like abundance , similarity  depend on  

‣ It vanishes in unique equilibrium phase at a single : same value predicted by cavity calculation 

‣ For  exponentially-many un-invadable equilibria with a continuous distribution of diversity: we know 
the maximal and minimal diversity one can expect 

‣ For  all uninvadable equilibria are linearly unstable: 

μ m qab μ
ϕ

σ > σc,

σ > σc, ϕ > ϕMay

The complexity of equilibria: the results

γ = 0

 ΣQ(ϕ) = lim
D→∞

𝔼[log 𝒩(ϕ)]
D γ = 0

  arbitraryμ

13/19



Quenched, Annealed, Cavity “matching point”

= diversity- fraction of non-extinct speciesϕ

May stability bound

 =  solution of cavity 

equations for 
ϕcav

σ > σc(γ)

MULTIPLE 
EQUILIBRIA

UNIQUE 
EQUILIBRIUM

x

‣ Cavity calculation still picks up equilibria, but not the most numerous
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Quenched, Annealed, Cavity “matching point”

‣ Order parameters do depend on : as  increases,  grows towards “unbounded” phaseμ μ m

= diversity- fraction of non-extinct speciesϕ

May stability bound

 =  solution of cavity 

equations for 
ϕcav

σ > σc(γ)

MULTIPLE 
EQUILIBRIA

UNIQUE 
EQUILIBRIUM

x

‣ Equilibria with more coexisting species have lower average abundance & are less similar to each others
‣ Cavity calculation still picks up equilibria, but not the most numerous
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Average vs typical

‣ At : annealed gives exponentially many equilibria at diversity were there is none! 
   Similar phenomenology in econophysics models:

σ ∼ σc

Garnier-Brun, Benzaquen, Ciliberti, Bouchaud 2021 

‣ Diversity of most numerous equilibria not captured by annealed approximation
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Beyond the transition III
Tuning non-reciprocity



A special limit: conservative dynamics ( )γ = 1

Roy, Biroli, Bunin, Cammarota 2019

: many local minima. As in spin glasses, many 
are marginally stable: diversity saturates May 
bound, .

σ > σc

ϕ = ϕMay

spectra of stability matrix

marginally stablestable 

λ
0

λ
0

Without noise ( ): κ = 0

In spin-glass models: long-time dynamics converges to 
marginally stable minima; convergence slow, aging.

Symmetric interactions  the model is conservative: like a spin-glass model with random energy . (γ = 1) ℰ(n, α̂)

Biroli, Bunin, Cammarota 2018

Stable equilibria are minima of : Can be characterized with spin-glasses techniques for metastability.ℰ(n, ̂a)

Fβ( ̂a) = log 𝒵β( ̂a) = log∫ℳD

dn e−βℰ(n, ̂a) β → ∞

Altieri, Roy, Cammarota, Biroli 2021With noise ( ): κ > 0

Cugliandolo, Kurchan 1995

Symmetric rGLV: convergence to equilibria with , 
with aging 

ϕ = ϕMay

dni

dt
= ni fi(n, ̂a) + κξi(t) = − ni∂ni

ℰ(n, ̂a) + κξi(t)

ρ(λ)

and “tilded” versions

selection principle for equilibria! 
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The case : average numberγ ≠ 0

γc

‣ Transition at : for , all equilibria are unstableγc = 0.373 γ < γc

‣ For , at  some stable and marginally stable equilibria exist at small γ > γc σ > σsb ϕ
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The same “absolute instability transition” in the average number shown for other models: 

What about typical number? 

Fyodorov 2016, Ben Arous, Fyodorov, Khoruzhenko 2021

 work in progress.→



Summing up



Follow-ups and work in progress 

  Complexity of invadable equilibria, might be relevant for dynamics◼

 Chaotic dynamics for non-reciprocal interactions observed in several models◼

Arnoulx de Pirey, Bunin 2024 

Lyapunov exponent computed explicitly in neural-network models

Relations between complexity and Lyapunov
Wainrib, Toboul,  PRL 110, 2013

Sompolinsky, Crisanti, Sommers  PRL 61, 1988

Blumenthal, Rocks, Mehta  PRL 132, 2024

invadable  
equilibrium?

Roy, Biroli, Cammarota 2019 
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Ben Arous, Fyodorov, Khoruzhenko 2021

  Quenched complexity for general : “absolute instability transition”◼ γ
beyond the annealed approximation



 Exponentially many un-invadable, linearly unstable equilibria ◼

  We know the range in diversity and abundance◼

 Un-invadable, linearly stable equilibria do not exist◼

 Cavity calculation makes sense beyond its stability boundary◼

  Quenched matter: the average can be a very poor indicator◼

  Diversity correlates negatively with abundance & similarity ◼

 Computation of quenched compexity of equillibria for non-conservative 
models with non-reciprocal interactions
◼

Equilibria of rGLVE with independent , non-reciprocal interactions(γ = 0)

More technically

Summary results.
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Thank you. 


