

Université Gustave Eiffel — October 2024 Valentina Ros @ LPTMS Orsay **Ecological networks, complex systems, stability**

The multiple equilibria of many-species ecosystems: how many, how stable, how relevant?

joint work with F. Roy, G. Biroli, G. Bunin, A. Turner

Physical Review Letters 130, 257401 (2023) J. Phys. A: Math. Theor. 56 305003J (2023)

PhOM **Physique des** Ondes et de la **Matière**

The setting

Complex dynamical systems 1/19

Review Article | Published: 11 October 2001

Catastrophic shifts in ecosystems

Marten Scheffer<sup>
</sup>
₂, Steve Carpenter, Jonathan A. Foley, Carl Folke & Brian Walker

Nature 413, 591-596 (2001) Cite this article

All ecosystems are exposed to gradual changes in climate, nutrient loading, habitat fragmentation or biotic exploitation. Nature is usually assumed to respond to gradual change in a smooth way. However, studies on lakes, coral reefs, oceans, forests and arid lands have shown that smooth change can be interrupted by sudden drastic switches to a contrasting state. Although diverse

Article | Published: 27 June 2022

Chaos is not rare in natural ecosystems

Tanya L. Rogers^[2], Bethany J. Johnson & Stephan B. Munch¹²

Nature Ecology & Evolution 6, 1105-1111 (2022) Cite this article

Chaotic turnover of rare and abundant species in a strongly interacting model community

Emil Mallmin ¹ 2, Arne Traulsen ¹, and Silvia De Monte ¹ Authors Info & Affiliations

Edited by Alan Hastings, University of California, Davis, CA; received July 28, 2023; accepted February 2, 2024

March 4, 2024 | 121 (11) e2312822121 | https://doi.org/10.1073/pnas.2312822121

Model of **high-dimensional** (many species) ecosystem dynamics with **random interactions**

Counting problem: how many equilibria \mathbf{n}^* such that $F_i(\mathbf{n}^*, \hat{a}) = 0$ for all $i = 1, \dots, D$ How many, *typically:* with highest probability $(\mathbb{P} \to 1$ when $D \to \infty)$

High-dimensional system of non-linear random equations: can have many solutions. **If many: how diverse, how stable, how relevant for dynamics?**

rGLVE - random Generalized Lotka-Volterra equations for *many* interacting species

 $i = 1, \cdots, D \gg 1$ $dn_i(t)$ *dt* $= n_i(t) \left[1 - n_i(t) - \right]$ *D* ∑ *j*=1 α_{ij} $n_j(t)$ $n_i(t) =$ (rescaled) abundance of species *i* $\langle \alpha_{ij} \rangle =$ *μ* \overline{D} $\langle \alpha_{ij} \alpha_{kl} \rangle_c =$ *σ*2 \overline{D} $\left(\delta_{ik}\delta_{jl} + \gamma \delta_{il}\delta_{jk} \right)$ Random pairwise interactions. α_{ij} Gaussian, correlated only with α_{ji} Reciprocal interactions: $\gamma = 1$ α_{ii} *αij* interactions

Three parameters: average interaction strength *μ*, variability of interactions *σ*, asymmetry *γ*

Several talks on this model, already! In this talk:

- A large-*D* scaling: all terms in equation are $\mathcal{O}(1)$ when $D \to \infty$. **vs S. Allesina**
- No sparsity: all-to-all interactions. No spatial eterogeneities. **vs W. Hachem, F. de Laender**
- Gaussian interactions. No time dependent couplings ("quenched randomness"). vs S. Azaele

A dynamical transition

$$
\frac{dn_i(t)}{dt} = n_i(t) \left(1 - n_i(t) - \frac{\mu}{D} \sum_{j=1}^D n_j(t) + \frac{\sigma}{\sqrt{D}} \sum_{j=1}^D a_{ij} n_j(t) \right) \qquad \langle a_{ij} a_{kl} \rangle = \delta_{ik} \delta_{jl} + \gamma \delta_{il} \delta_{jk}
$$

For *D* large: two different dynamical phases separated by a transition

A dynamical transition

$$
\frac{dn_i(t)}{dt} = n_i(t) \left(1 - n_i(t) - \frac{\mu}{D} \sum_{j=1}^D n_j(t) + \frac{\sigma}{\sqrt{D}} \sum_{j=1}^D a_{ij} n_j(t) \right) \qquad \langle a_{ij} a_{kl} \rangle = \delta_{ik} \delta_{jl} + \gamma \delta_{il} \delta_{jk}
$$

For *D* large: two different dynamical phases separated by a transition

Simulation of dynamics from: Roy, Biroli, Cammarota 2019

Similar transitions in many large-*D* models of agents with random interactions & non-linearity

Neural networks: Sompolinsky, Crisanti, Sommers 1988 Ecosystems: Rieger 1989 Game theory: Berg, Weigt 1999 Galla, Farmer 2013 Opper, Diederich 1991 Opper, Diederich 1999 Garnier-Brun, Benzaquen, Ciliberti, Bouchaud 2021 4/19

Some questions & some tools

stationary, unique equilibrium

Stationary regime: properties of the equilibrium?

Loss of stability of equilibrium?

Loss of uniqueness: emergence of multiple, competing equilibria, i.e. glassiness? Which properties?

Species turnover Rescuing, intermittency

Chaotic dynamics? Slow dynamics with aging? Fundamental mechanisms?

self-consistent large- D arguments: cavity, AMP review: Barbier, Arnoldi 2017

talk W. Hachem

(non)-linear response & its breakdown

 Methods from glasses [replica method] & random matrix theory [Kac-Rice methods]

Simulations dynamics

Effective single-particle dynamical processes: DMFT review: Cugliandolo 2023 Galla 2023

 talk S. Azaele

Some questions & some tools

stationary, unique equilibrium

Stationary regime: properties of the equilibrium?

Loss of stability of equilibrium?

Loss of uniqueness: emergence of multiple, competing equilibria, i.e. glassiness? Which properties?

Species turnover Rescuing, intermittency

Chaotic dynamics? Slow dynamics with aging? Fundamental mechanisms?

This talk

 \blacksquare 5/19

 Methods from glasses [replica method] & random matrix theory [Kac-Rice methods]

stationary, unique equilibrium

Plan of the rest of the talk

- When the equilibrium is unique: self-consistency, diversity, stability
- Beyond the transition I: the high-*D* math tools
- \blacksquare Beyond the transition II: equilibria for uncorrelated interactions $(\gamma = 0)$
- Beyond the transition III: tuning the non-reciprocity
- Work in progress & summary

When the equilibrium is unique.

$$
\frac{dn_i(t)}{dt} = n_i \left(1 - n_i - \frac{\mu}{D} \sum_{j=1}^D n_j + \frac{\sigma}{\sqrt{D}} \sum_{j=1}^D a_{ij} n_j + \epsilon_i \right) \Big|_{\mathbf{n}^*, \epsilon = 0} = n_i f_i(\mathbf{n}, \hat{a}) \Big|_{\mathbf{n}^*, \epsilon = 0} = 0
$$

effective growth rates/forces

 \Box 7/19

Two notions of stability of the equilibrium.

"saturation"

- $I_i(\mathbf{n}^*, \hat{a}) < 0$ for $n_i^* = 0$
- \blacksquare Linear stability matrix $M_{ij} =$ $\partial f_i(\mathbf{n}^*, \hat{a})$ ∂*nj* negative definite for $n_i^*, n_j^* > 0$

Equlibrium is a random vector. For large D , has properties that are **typical** $(\rightarrow$ concentrating):

■ Diversity 1 *D D* ∑ *i*=1 $1_{n_i^*>0}$ - coexisting species ■ Abundance 1 *D D* $\sum n_i^*$ *i*=1 \blacksquare Self-similarity $q =$ 1 *D D* ∑ *i*=1 $[n_i^*]^2$ *χ* = 1 *D D* ∑ *i*=1 *dn** *i* $d\epsilon_i$ **l**_{$\epsilon=0$} ■ Suceptibility

Unique equilibrium: self-consistent "cavity" analysis

8/19

(i) **assume unique, un-invadable stable equilibrium** $\mathbf{n} = (n_1, \dots, n_D)$ **with D species and given** q, m, χ, ϕ **.**

(ii) add one species: $0 \to n_0$. When *D* large, small perturbation that should modify weakly the equilibrium

Assume other species **react linearly**: $n_i = n_{i/0} + \delta n_i$

Derive an equation for n_0 at new equilibrium as a function of parameters of old equilibrium

(iii) impose **self-consistency**: new species behaves statistically like all others \rightarrow closed equations for *m*, ϕ , χ , *q*.

Lotka-Volterra/replicator: Diederich, Opper 1989 MacArthur: Advani, Bunin, Mehta 2017 **Dynamical version (DMFT):** Opper, Diederich 1991 Bunin 2017 Barbier Arnoldi 2017 Galla 2018 Roy, Biroli, Cammarota 2019 Galla 2006 Blumenthal, Rocks, Mehta 2024

 $9/19$

Consistency of the cavity derivation can be checked: breaks down at $\sigma_c = \sqrt{2(1+\gamma)^{-1}}$.

Notice: cavity equations can still be solved beyond this boundary: meaning?

UNIQUE	Perturb infinitesimally all coexisting species: $n_i \rightarrow n_i + \epsilon \Delta n_i$, Δn_i random	
EQUILIBRIUM	Boundary of stability: $\langle \left(\frac{\delta n_0}{\delta \epsilon}\right)^2 \rangle \rightarrow \infty$	$\sigma_c(\gamma) = \sqrt{2}(1 + \gamma)^{-1}$
What happens to the equilibrium?	Because marginally stable at $\sigma_c(\gamma)$	Linear stability matrix $M_{ij} = \frac{\partial f_i(\mathbf{n}^*, \hat{a})}{\partial n_j}$ has a spectrum touching zero
What happens to the equilibrium?	Because density of M/\sqrt{D}	has a spectrum touching zero
Weyl's stability	supp[$\rho(\lambda)$] — evaluate density of M/\sqrt{D}	3
Weyl's probability	supp[$\rho(\lambda)$] — evaluate density of M/\sqrt{D}	3
Weyl's probability	2	3
Weyl's probability	3	
Weyl's probability	3	
Weyl's probability	4	
Weyl's probability	5	
Weyl's probability	6	
Wey		

Diversity and stability are related by **May stability bound:** lineraly stable equilibria for $\phi < \phi_{\text{May}} =$ 1 $σ²(1 + γ)²$ R. May 1972 Bound saturated at transition.

Beyond the transition I

The high-D math tools.

$$
n_i \left(1 - n_i - \frac{\mu}{D} \sum_{j=1}^{D} n_j + \frac{\sigma}{\sqrt{D}} \sum_{j=1}^{D} a_{ij} n_j \right) = n_i \ f_i(\mathbf{n}) = 0
$$

Equilibria: $\mathbf{n}^{\alpha} = (n_1^{\alpha}, \dots, n_D^{\alpha})$

D→∞

log

D

 $=$ \lim *D*→∞

Concentration of the log:

f $\mathbf{f}^{\alpha} = (f_1(\mathbf{n}^{\alpha}), \cdots, f_D(\mathbf{n}^{\alpha}))$

 $\sigma > \sigma_c$, number of equilibria $\mathcal N$ scales as $\mathcal N \sim O(e^D)$

 $[\log N]$

D

Un-invadibility: $f_i(\mathbf{n}^{\alpha}) < 0$ if $n_i^{\alpha} = 0$

Typical properties are now distributed over equilibria

Computer Physics Communications 121-122 (1999) 141-144

Replicator dynamics

Manfred Opper^{a, 1}, Sigurd Diederich^b

It is possible to calculate the average of the number $\mathcal N$ of locally stable fixed point solutions. We can show $\lim_{h \to 0} \frac{\log h}{h} = \lim_{h \to 0} \frac{\log h}{h} = \sum$ **complexity complexity here** $u \to \sigma^{-1}$ and $\eta \to \gamma$

$$
\lim_{N \to \infty} \frac{1}{N} \ln \langle \mathcal{N} \rangle = \begin{cases} =0 & \text{for } u > u_{\text{c}} \text{ and all } \eta, \\ > 0 & \text{for } u < u_{\text{c}} \text{ at } \eta = 1, \\ < 0 & \text{for } u < u_{\text{c}} \text{ at } \eta = 0. \end{cases} \tag{4}
$$

 talk H. Benisty the log makes a difference!

 $\equiv \Sigma$ complexity"

"(quenched)

The Kac-Rice formula & replicas

Number $\mathcal{N}(\phi)$ of equilibria \mathbf{n}^* such that $\mathbf{f}(\mathbf{n}^*) = 0$ and $\Phi(\mathbf{n}^*) = \phi$ (arbitrary constraints) is a random variable with scaling: $\mathcal{N}(\phi) \sim e^{D\Sigma(\phi) + o(D)}$.

The **"Kac-Rice formula"** gives a recipe to compute the first moment of $\mathcal{N}(\phi)$

$$
\mathbb{E}[\mathcal{N}(\phi)] = \int_{\mathcal{M}_D} d\mathbf{n} \, \mathcal{P}_{\mathbf{n}} \left(\mathbf{f} = \mathbf{0} \right) \mathbb{E}_{\mathbf{n}} \left[\left| \det \left(\frac{\partial f_i(\mathbf{n})}{\partial n_j} \right) \middle| \chi_{\Phi(\mathbf{n}) = \phi} \right| \middle| \mathbf{f} = \mathbf{0} \right]
$$

Extracting the large-*D* limit of this, we obtain the **"annealed complexity"**

$$
\Sigma^{A}(\phi) = \lim_{D \to \infty} \frac{\log \mathbb{E}[\mathcal{N}(\phi)]}{D}
$$

Exponentially-large quantities: asymptotics of the average is not asymptotics of the typical value!

To characterize typical values, rather compute the **"quenched complexity"**

$$
\Sigma^{\mathcal{Q}} = \lim_{D \to \infty} \frac{\mathbb{E}[\log \mathcal{N}]}{D} = \lim_{D \to \infty} \lim_{m \to 0} \frac{\mathbb{E}[\mathcal{N}^m] - 1}{Dm}
$$
 Replica Trick!

A high-*D* **variational problem**

The Kac-Rice formulas for higher moments:

$$
\mathbb{E}[\mathcal{N}^m(\phi)]=\int_{\mathcal{M}_D^{\otimes m}}\prod_{k=1}^md\mathbf{n}^{(k)}\,\mathcal{P}_{\{\mathbf{n}^{(k)}\}}\left(\left\{\mathbf{f}^{(k)}=\mathbf{0}\right\}\right)\mathbb{E}_{\{\mathbf{n}^{(k)}\}}\left[\prod_{k=1}^m\left|\det\left(\frac{\partial f_i(\mathbf{n}^{(k)})}{\partial n_j^{(k)}}\right)\right|\chi_{\Phi(\mathbf{n}^{(k)})=\phi}\ \right|\left\{\mathbf{f}^{(k)}=\mathbf{0}\right\}\right]
$$

→ problems of **coupled random matrices**

The essence of the procedure: map into a variational problem in large-*D*:

$$
\mathbb{E}[\mathcal{N}^m(\phi)] = \int_{a < b < -1}^m d q_{ab} \, dm_a \, dp_a e^{Dm\mathcal{A}[q_{ab}, m_a, p_a] + \cdots} \sim e^{Dm\mathcal{A}[q_{ab}^*, m_a^*, p_a^*]}
$$
\n
$$
\text{mean-field dimensionality} \qquad \text{values optimizing the action}
$$

Result: coupled, self-consistent equations for parameters describing equilibria (abundance, similarity, effective growth rates)

"Replicated Kac-Rice" for quenched complexities: VR, Ben Arous, Biroli, Cammarota 2019

Beyond the transition II

Equilibria for uncorrelated interactions

The complexity of equilibria: the results

 $13/19$

- \blacktriangleright Complexity independent of μ . Parameters describing equilibria like abundance m , similarity q_{ab} depend on μ
- \blacktriangleright It vanishes in unique equilibrium phase at a single ϕ : same value predicted by cavity calculation
- ‣ For **exponentially-many un-invadable equilibria** with a continuous **distribution of diversity:** we know *σ* > *σc*, the maximal and minimal diversity one can expect
- \blacktriangleright For $\sigma > \sigma_c$, all uninvadable equilibria are linearly unstable: $\phi > \phi_{\text{May}}$

Quenched, Annealed, Cavity "matching point"

 $14/19$

ϕ= diversity- fraction of non-extinct species

‣ Cavity calculation **still picks up equilibria**, but not the most numerous

Quenched, Annealed, Cavity "matching point"

 \Box 14/19

- ‣ Cavity calculation **still picks up equilibria**, but not the most numerous
- ‣ Equilibria with more coexisting species have **lower average abundance & are less similar to each others**
- ‣ Order parameters do **depend on** *μ*: as *μ* increases, *m* grows towards "unbounded" phase

Average vs typical

- ‣ Diversity of most numerous equilibria not captured by annealed approximation
- \blacktriangleright At $\sigma \sim \sigma_c$: annealed gives exponentially many equilibria at diversity were there is none! Similar phenomenology in econophysics models: Garnier-Brun, Benzaquen, Ciliberti, Bouchaud 2021

 $15/19$

Beyond the transition III

Tuning non-reciprocity

A special limit: conservative dynamics $(y = 1)$

16/19

Symmetric interactions (*γ* = 1) the model is conservative: like a spin-glass model with random energy ℰ(**n**, *α*̂).

$$
\frac{dn_i}{dt} = n_i f_i(\mathbf{n}, \hat{a}) + \kappa \xi_i(t) = - n_i \partial_{n_i} \mathcal{E}(\mathbf{n}, \hat{a}) + \kappa \xi_i(t)
$$

Stable equilibria are minima of ℰ(**n**, *a*)̂: Can be characterized with **spin-glasses techniques for metastability**.

 $F_\beta(\hat{a}) = \log \mathcal{F}_\beta(\hat{a}) = \log \int_{\mathcal{M}_D} d\mathbf{n} \, e^{-\beta \mathcal{E}(\mathbf{n}, \hat{a})} \qquad \beta \to \infty$ and "tilded" versions

 $\sigma > \sigma_c$: many local minima. As in spin glasses, many **are** *marginally stable:* diversity saturates May bound, $\phi = \phi_{\text{May}}$.

Without noise $(\kappa = 0)$: Biroli, Bunin, Cammarota 2018 With noise (*κ* > 0): Altieri, Roy, Cammarota, Biroli 2021

In spin-glass models: long-time dynamics converges to **marginally stable** minima; convergence slow, aging. Cugliandolo, Kurchan 1995 **selection principle for equilibria!**

Roy, Biroli, Bunin, Cammarota 2019 Symmetric rGLV: convergence to equilibria with $\phi = \phi_{\rm May}$, with aging

 $17/24$

► Transition at $γ_c = 0.373$: for $γ < γ_c$, all equilibria are unstable

► For $\gamma > \gamma_c$, at $\sigma > \sigma_{sb}$ some stable and marginally stable equilibria exist at small ϕ

The same "absolute instability transition" in the average number shown for other models: Fyodorov 2016, Ben Arous, Fyodorov, Khoruzhenko 2021

What about typical number? \rightarrow work in progress.

Summing up

Follow-ups and work in progress

◼ Complexity of **invadable equilibria**, might be relevant for dynamics Arnoulx de Pirey, Bunin 2024

◼ Quenched complexity for general *γ*: **"absolute instability transition"** beyond the annealed approximation

Ben Arous, Fyodorov, Khoruzhenko 2021

■ Chaotic dynamics for non-reciprocal interactions observed in several models

Blumenthal, Rocks, Mehta PRL 132, 2024 Roy, Biroli, Cammarota 2019

Lyapunov exponent computed explicitly in neural-network models

Sompolinsky, Crisanti, Sommers PRL 61, 1988

Relations between complexity and Lyapunov Wainrib, Toboul, PRL 110, 2013

Summary results. 19/19

Equilibria of rGLVE with independent ($\gamma = 0$), non-reciprocal interactions

- Un-invadable, linearly stable equilibria **do not exist**
- Exponentially many un-invadable, linearly unstable equilibria
- Diversity **correlates negatively** with abundance & similarity
- We know the **range in diversity** and abundance

More technically

■ Computation of quenched compexity of equillibria for non-conservative models with **non-reciprocal interactions**

- ◼ Quenched matter: the average can be a **very poor indicator**
- Cavity calculation makes sense **beyond its stability boundary**

References

V. Ros, F. Roy, G. Biroli, G. Bunin and A. Turner , Physical Review Letters 130, 257401 (2023) V. Ros, F. Roy, G. Biroli, G. Bunin, J. Phys. A: Math. Theor. 56 305003J (2023) **Thank you.**