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● Adaptive strategy in variable environments

● In predictable environments, dormancy can be used to avoid stressors

○ e.g. seasonal diapause, sporulation in response to stress

● In unpredictable environments, dormancy can still be adaptive as a 
bet-hedging strategy (Cohen 1966)

○ Bet-hedging increases long-run growth by 
reducing temporal variance in growth rates
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Endogenous fluctuations in 
population dynamics

● Strong interactions can lead to 
population cycles and chaos

● Theoretical models predict cycles and 
chaos should be very common

○ Especially in trophic systems

● Two big questions: Are cycles and 
chaos rare in nature? If so, why? 

Beninca et al. (2008) Nature
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Dormancy in the context of complex ecological dynamics

● Is dormancy an adaptive strategy in 
the presence of population 
cycles/chaos?

● How does dormancy affect 
population dynamics?

● How does feedback between 
dormancy and stability play out?

Chaos

Glock (2023) 
Biogeosciences

Favors

Suppresses

Dormancy
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Chaos in 1-D discrete-time population dynamics

● Many well-known discrete-time models exhibit chaos
○ e.g. Ricker, Hassel, Maynard-Smith models

● A simple “archetype” for this behavior is the discrete-time 
logistic growth model:

Intrinsic growth rate Density dependence



r

Stable equilibrium Period 2 cycle Period 4 cycle

Chaos

N*
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The origins of instability

Sam Derbyshire (Wikipedia)
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Adding dormancy

Density-dependent growth Dormant fraction Mortality in dormancy

Separability: fr(N) = h(r) g(N)
with h increasing, g decreasing

Stable equilibrium for r < rc , 
fluctuating dynamics for r > rc
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For logistic density-dependence, 
dynamics map onto logistic model 
without dormancy, according to:

More generally, the bifurcation point 
increases:

The origins of stabilization



Four results

1) Dormancy stabilizes dynamics by lowering the 
effective growth rate

2) Dormancy is favored when population dynamics 
fluctuate

3) Strategies with and without dormancy can coexist 

4) Long-term evolution of dormancy drives populations 
to the “edge of chaos”
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Two-strategy model

No “niche differences”
Equal mortality risk in dormancy



Invader with dormancy

Resident with chaotic dynamics

Positive invasion 
growth rate



● Fluctuations confer a 
bet-hedging benefit to 
dormancy

○ Nonlinear averaging over 
high and low growth rates

● Mortality in dormancy 
imposes a cost

● Positive IGR when 
        benefits > costs



Four results

1) Dormancy stabilizes dynamics by lowering the 
effective growth rate

2) Dormancy is favored when population dynamics 
fluctuate

3) Strategies with and without dormancy can coexist 
4) Long-term evolution of dormancy drives populations 

to the “edge of chaos”
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“Stabilizer-destabilizer 
  trade-off”

 (Yamamichi & 
   Letten 2022)



Four results

1) Dormancy stabilizes dynamics by lowering the 
effective growth rate

2) Dormancy is favored when population dynamics 
fluctuate

3) Strategies with and without dormancy can coexist 

4) Long-term evolution of dormancy drives 
populations to the “edge of chaos”



Resident active fraction
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Pairwise 
invasibility 
analysis

Bifurcation point 
(“edge of stability/chaos”)

Evolutionary stable 
dormancy strategy



Extrinsic variability
● Temperature
● Precipitation
● Resource pulses
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Intrinsic variability

Overcompensation in 
discrete time population 

dynamics 
(pre-print online now)

Multispecies interactions 
in continuous time 
(work in progress)
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Multiple species, continuous time

Resident 
community 
(fluctuating)

“Mutant” 
species j with 
dormancy
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Fast dormancy dynamics

● Change variables: N(t) = n(t) + q(t) (total population) 
and R(t) = n(t) / N(t) (active fraction)

● Define ε = 1 / β and γ = α / β = constant

● As ε → 0, the dynamics of active R are fast – we 
can take R to be at quasi-equilibrium:

● Dynamics of N are simple:

Realized per 
capita growth 
rate is convex in f 
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● (Hadeler 2008): In general, dormancy can stabilize or 
destabilize dynamics

● If αi = α, βi = β for all i, dormancy stabilizes
○ If u ± iv, is an eigenvalue of the community matrix 

without dormancy and u > 0, then the corresponding 
eigenvalues with dormancy have negative real part iff 

 v2 > 4 u α - (α + β - u)2 and v (β - u) > u (α + β - u)2 
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Can dormancy stabilize community dynamics?

v2 > 4 u α - (α + β - u)2

v (β - u) > u (α + β - u)2 

α = 1, β = 0.1 α = 1, β = 0.5 α = 1, β = 2

Stabilization requires α > u  and v large compared to u

stabilized
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Which dynamics can dormancy stabilize?

Interaction matrices described by 
elliptic ensembles cannot generally 
be stabilized by dormancy

Stable
Unstable



Which dynamics can dormancy stabilize?

● Dormancy can stabilize against Hopf bifurcations
○ Associated with food chain/web dynamics

● Bilinsky and Hadeler (2009) showed that 
dormancy can stabilize MacArthur-Rosenzweig 
predator-prey dynamics
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Evolution of dormancy in a single species

● Hadeler’s analysis applies to systems with highly symmetric 
dormancy

● In general, determining stabilization by dormancy is hard

● We are most interested in cases where dormancy evolves in 
one species

● Open question: Can we characterize this case?



Evolution of dormancy in a single species

P

V1 V2

Simple food web model 
(Gilpin 1979):

● One predator (P) 

● Two competing 
prey (V1 and V2)

● Lotka-Volterra 
dynamics

Robey et al. (2024)



Gilpin model

Chaotic resident 
community

P

V1 V2



Rapid growth 
of dormancy

Gilpin model

P

V1 V2



Stabilization, 
dormancy 
advantage 
diminishes

Gilpin model
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● Fluctuating dynamics should be vulnerable to invasion and 
suppression by dormancy

● Trade-offs between dormancy strategies can enable coexistence 

● Evolution of dormancy may drive dynamics to the “edge of stability” 

● In multispecies communities, fluctuating dynamics favor evolution of 
dormancy, but dormancy is only sometimes stabilizing

○ Dormancy stabilizes trophic dynamics
○ Rich, open questions related to interaction of dormancy with 

network structure

Some conclusions



Thanks for listening!

Co-authors:

Thanks to Hull and Vasseur   
 labs for discussions

David Vasseur Pincelli Hull



Dormancy as a bet-hedging strategy

Buerger et al. (2012) 
App. and Env. Microbio.

Stochastic 
dormancy kinetics


