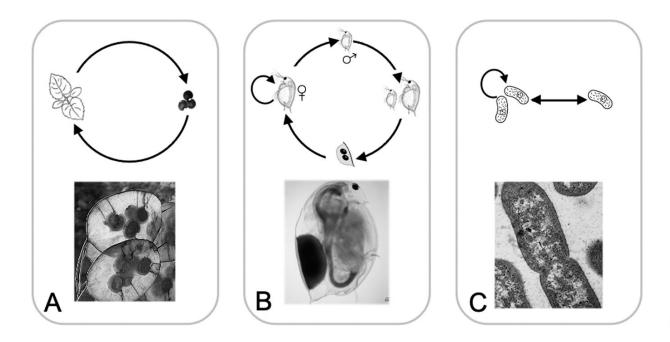
Evolution of dormancy in the context of complex ecological dynamics

Mululum

Zach Miller | Yale University | October 2024

• Dormancy is ubiquitous across the tree of life

• Dormancy is ubiquitous across the tree of life



Lennon et al. (2021) Nature Comm.

Dormancy

- Dormancy is ubiquitous across the tree of life
- Adaptive strategy in variable environments

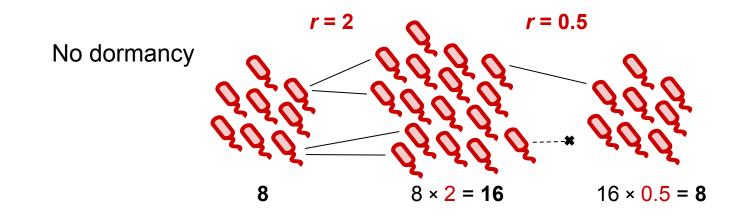
Dormancy

- Dormancy is ubiquitous across the tree of life
- Adaptive strategy in variable environments
- In predictable environments, dormancy can be used to avoid stressors
 - e.g. seasonal diapause, sporulation in response to stress

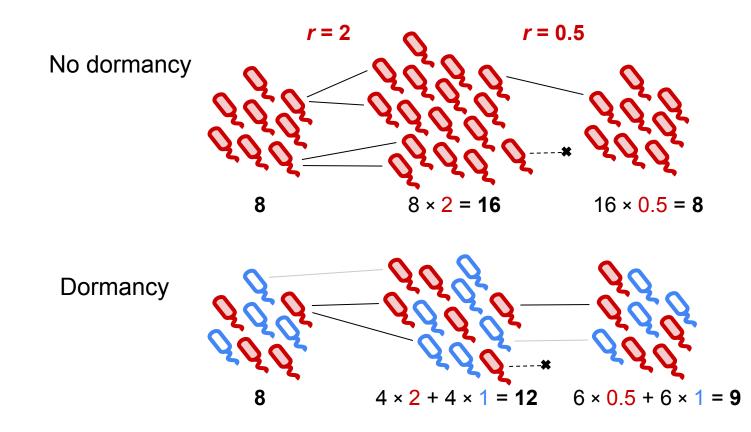
Dormancy

- Dormancy is ubiquitous across the tree of life
- Adaptive strategy in variable environments
- In predictable environments, dormancy can be used to avoid stressors
 - e.g. seasonal diapause, sporulation in response to stress
- In unpredictable environments, dormancy can still be adaptive as a bet-hedging strategy (Cohen 1966)
 - Bet-hedging increases long-run growth by reducing temporal variance in growth rates

Dormancy as a bet-hedging strategy



Dormancy as a bet-hedging strategy



Extrinsic variability

- Temperature
- Precipitation
- Resource pulses
- ...

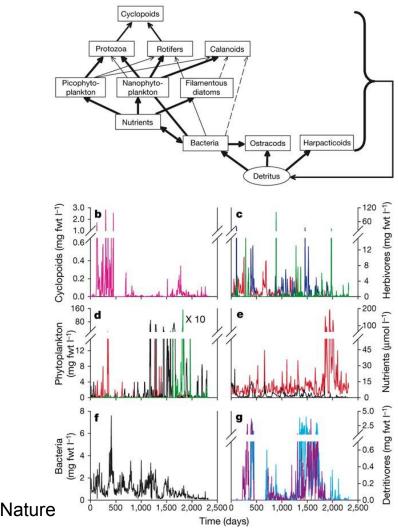
Extrinsic variability

- Temperature
- Precipitation
- Resource pulses
- ...

Intrinsic variability

Endogenous fluctuations in population dynamics

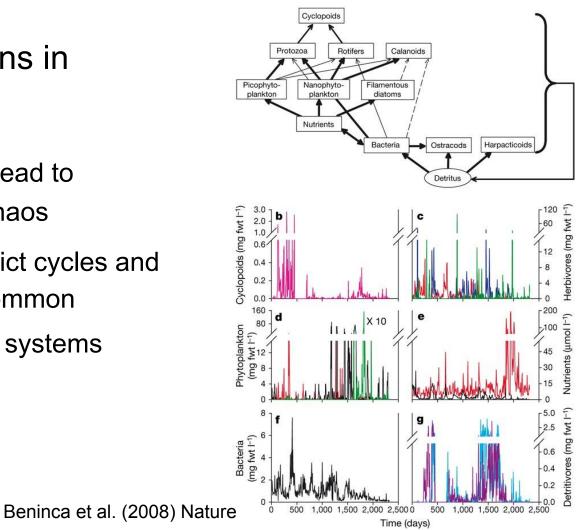
 Strong interactions can lead to population cycles and chaos



Beninca et al. (2008) Nature

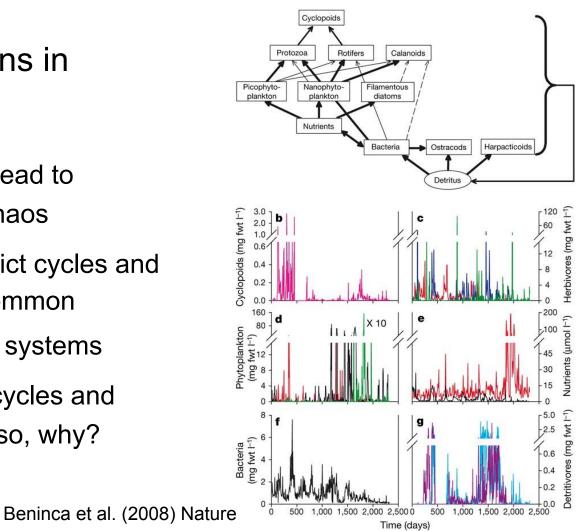
Endogenous fluctuations in population dynamics

- Strong interactions can lead to population cycles and chaos
- Theoretical models predict cycles and chaos should be very common
 - Especially in trophic systems



Endogenous fluctuations in population dynamics

- Strong interactions can lead to population cycles and chaos
- Theoretical models predict cycles and chaos should be very common
 - Especially in trophic systems
- Two big questions: Are cycles and chaos rare in nature? If so, why?



Dormancy in the context of complex ecological dynamics

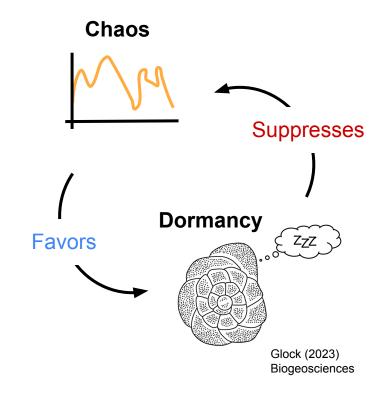
 Is dormancy an adaptive strategy in the presence of population cycles/chaos?

Dormancy in the context of complex ecological dynamics

- Is dormancy an adaptive strategy in the presence of population cycles/chaos?
- How does dormancy affect population dynamics?

Dormancy in the context of complex ecological dynamics

- Is dormancy an adaptive strategy in the presence of population cycles/chaos?
- How does dormancy affect population dynamics?
- How does feedback between dormancy and stability play out?



Extrinsic variability

- Temperature
- Precipitation
- Resource pulses
- ...

Overcompensation in discrete time population dynamics (pre-print online now)

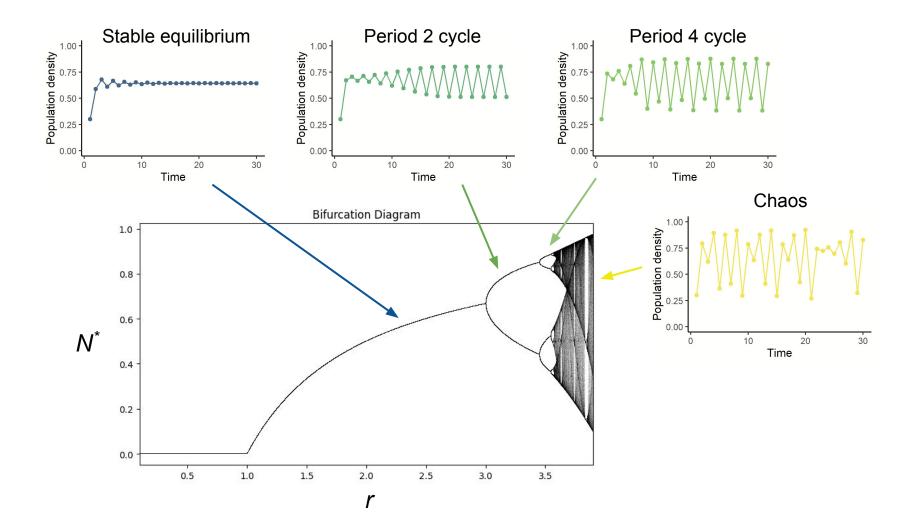
Intrinsic variability

Chaos in 1-D discrete-time population dynamics

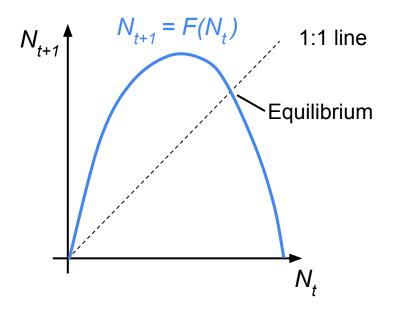
- Many well-known discrete-time models exhibit chaos
 - e.g. Ricker, Hassel, Maynard-Smith models
- A simple "archetype" for this behavior is the discrete-time logistic growth model:

$$N_{t+1} = r N_t (1-N_t)$$

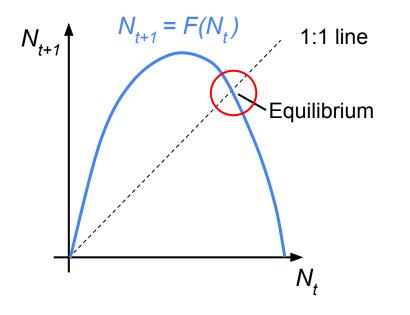
Intrinsic growth rate Density dependence

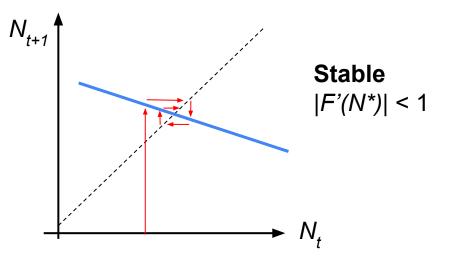


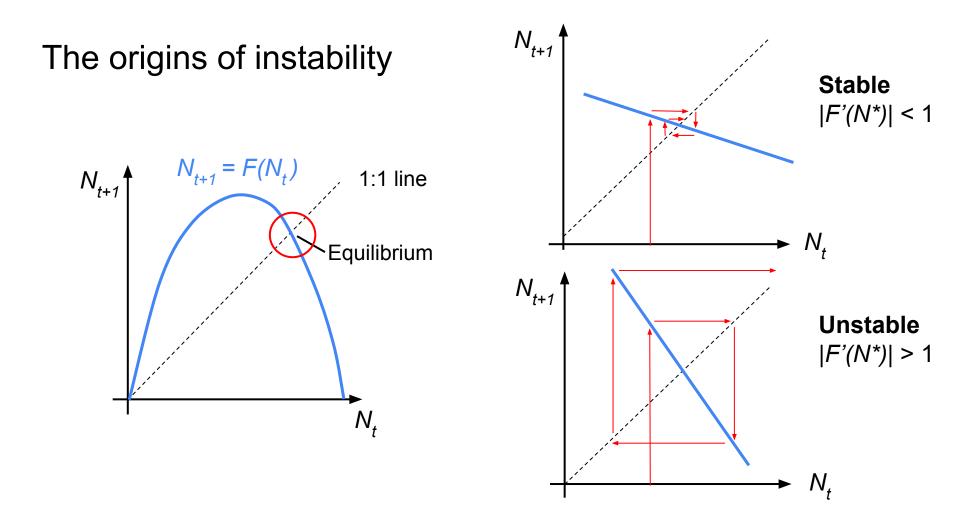
The origins of instability



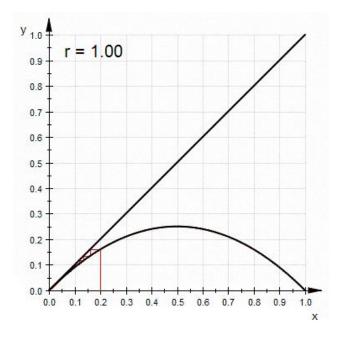
The origins of instability

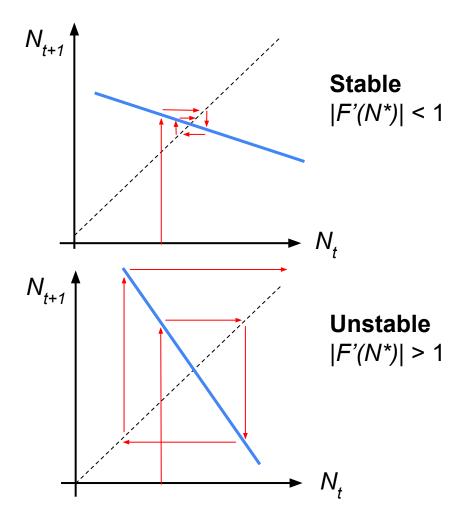






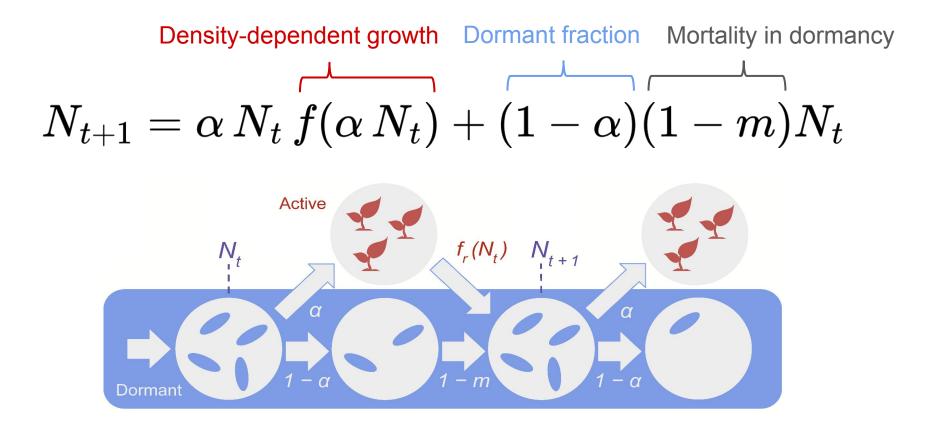
The origins of instability



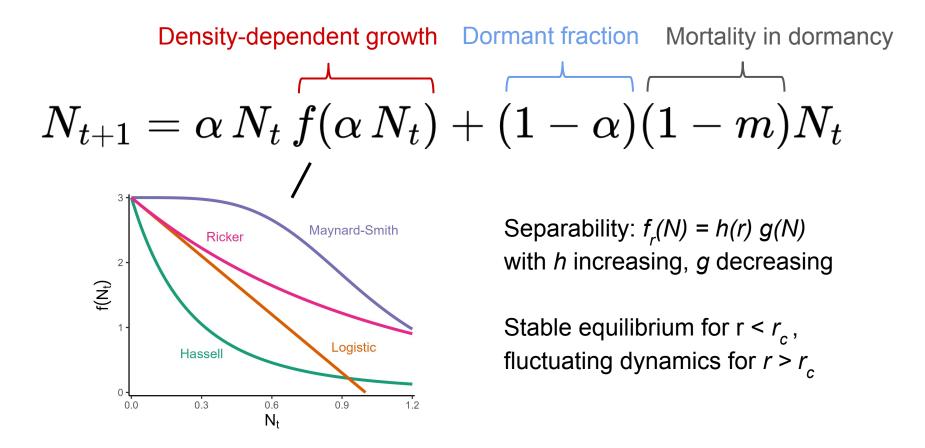


Sam Derbyshire (Wikipedia)

Adding dormancy



Adding dormancy

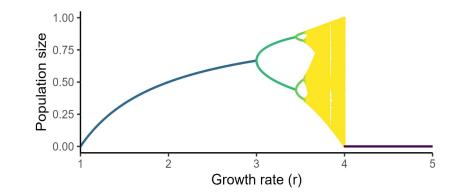


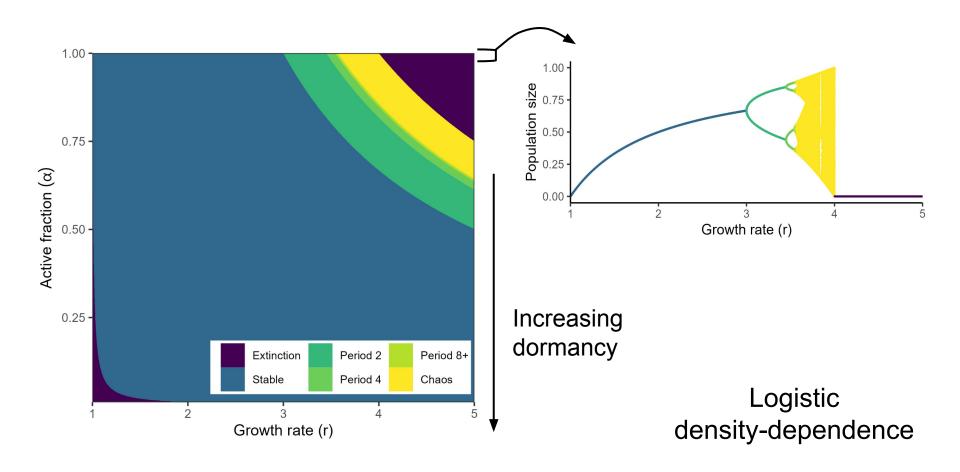
Four results

- 1) Dormancy stabilizes dynamics by lowering the effective growth rate
- 2) Dormancy is favored when population dynamics fluctuate
- 3) Strategies with and without dormancy can coexist
- 4) Long-term evolution of dormancy drives populations to the "edge of chaos"

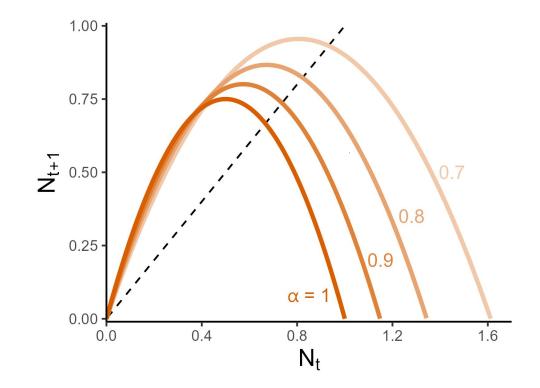
Four results

- 1) Dormancy stabilizes dynamics by lowering the effective growth rate
- 2) Dormancy is favored when population dynamics fluctuate
- 3) Strategies with and without dormancy can coexist
- 4) Long-term evolution of dormancy drives populations to the "edge of chaos"

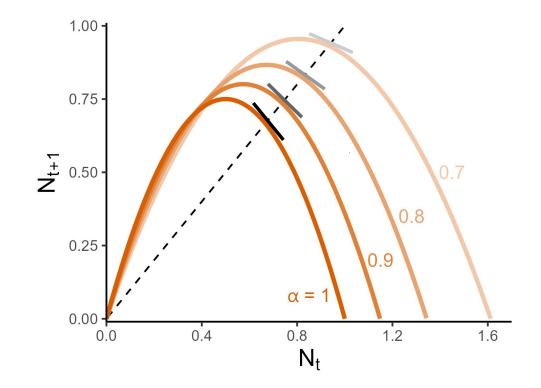




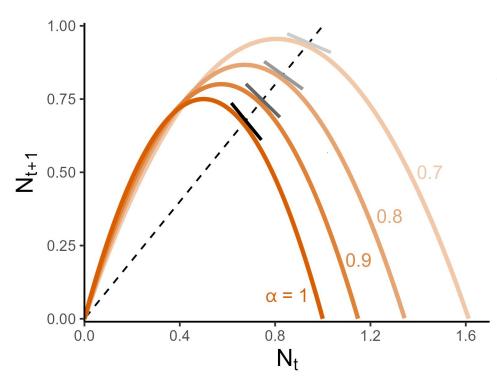
The origins of stabilization



The origins of stabilization



The origins of stabilization



For logistic density-dependence, dynamics map onto logistic model without dormancy, according to:

$$r_{
m eff} = lpha \, r + (1-lpha)(1-m)$$

More generally, the bifurcation point increases:

$$r_c(lpha) \geq ig(1 + rac{1-lpha}{lpha}\,mig)r_c(1)$$

Four results

- 1) Dormancy stabilizes dynamics by lowering the effective growth rate
- 2) Dormancy is favored when population dynamics fluctuate
- 3) Strategies with and without dormancy can coexist
- 4) Long-term evolution of dormancy drives populations to the "edge of chaos"

Two-strategy model

$$egin{aligned} N_{t+1} &= (lpha f_r(lpha N_t + lpha' N_t') + (1-lpha)(1-m))N_t \ N_{t+1}' &= (lpha' f_r(lpha N_t + lpha' N_t') + (1-lpha')(1-m))N_t' \end{aligned}$$

Two-strategy model

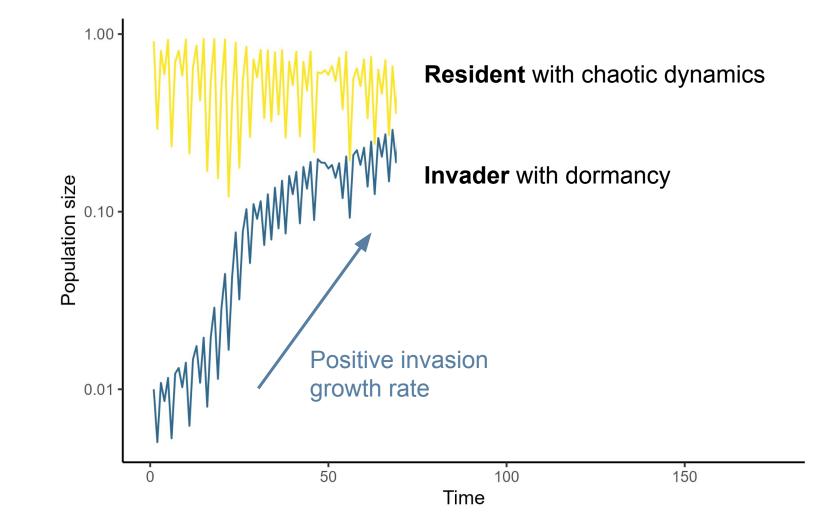
$$egin{aligned} N_{t+1} &= (lpha f_r(lpha N_t + lpha' N_t') + (1-lpha)(1-m))N_t \ N_{t+1}' &= (lpha' f_r(lpha N_t + lpha' N_t') + (1-lpha')(1-m))N_t' \end{aligned}$$

No "niche differences"

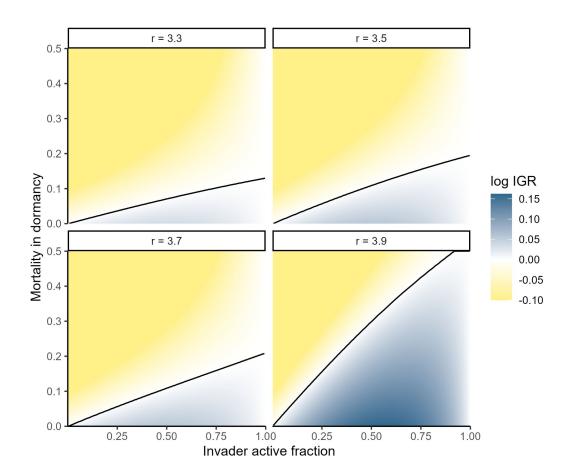
Two-strategy model

$$egin{aligned} N_{t+1} &= (lpha f_r(lpha N_t + lpha' N_t') + (1-lpha)(1-m))N_t \ N_{t+1}' &= (lpha' f_r(lpha N_t + lpha' N_t') + (1-lpha')(1-m))N_t' \end{aligned}$$

No "niche differences" Equal mortality risk in dormancy

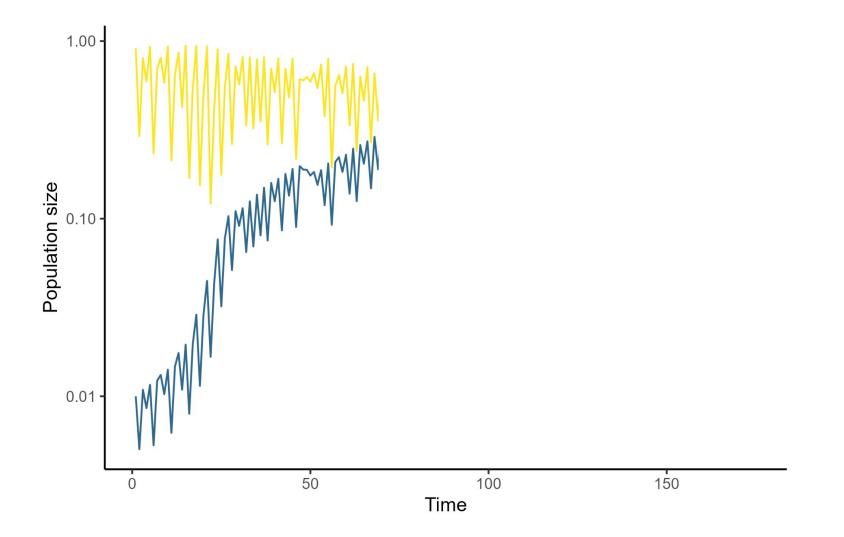


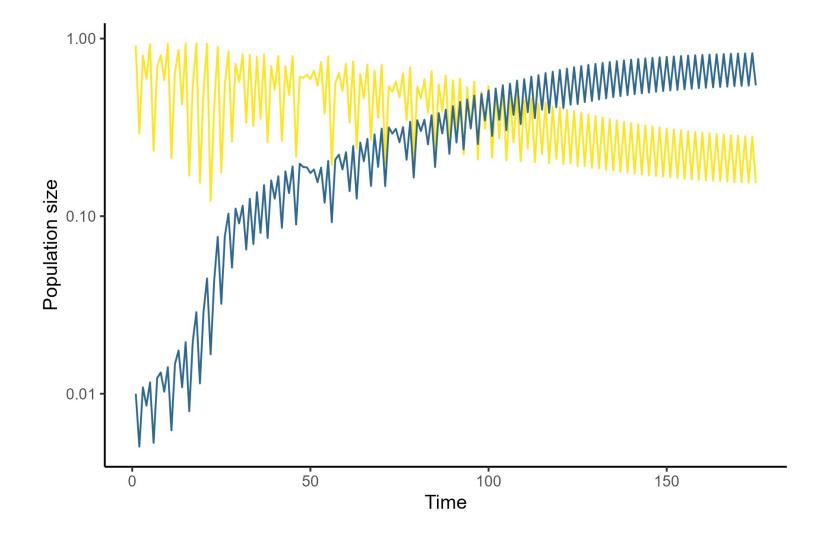
- Fluctuations confer a bet-hedging benefit to dormancy
 - Nonlinear averaging over high and low growth rates
- Mortality in dormancy imposes a cost
- Positive IGR when benefits > costs

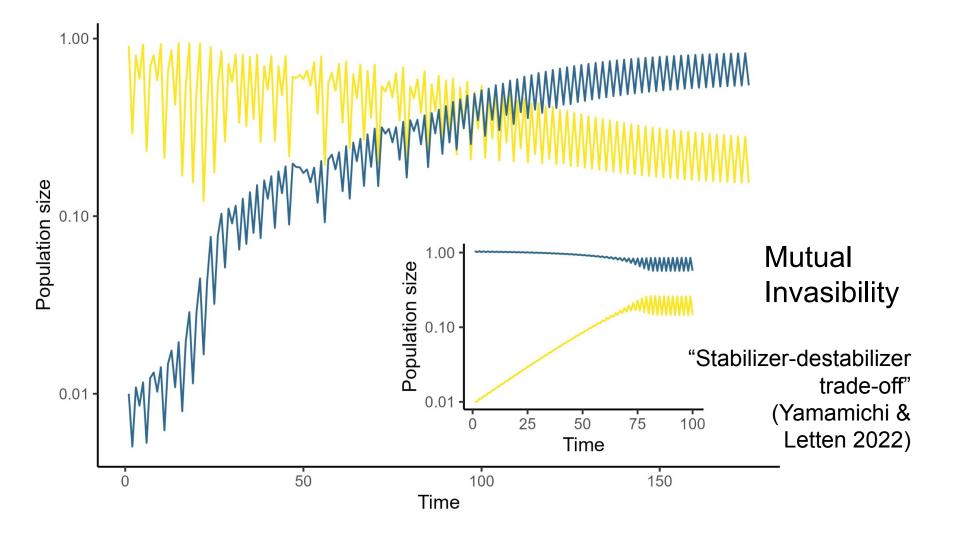


Four results

- 1) Dormancy stabilizes dynamics by lowering the effective growth rate
- 2) Dormancy is favored when population dynamics fluctuate
- 3) Strategies with and without dormancy can coexist
- 4) Long-term evolution of dormancy drives populations to the "edge of chaos"

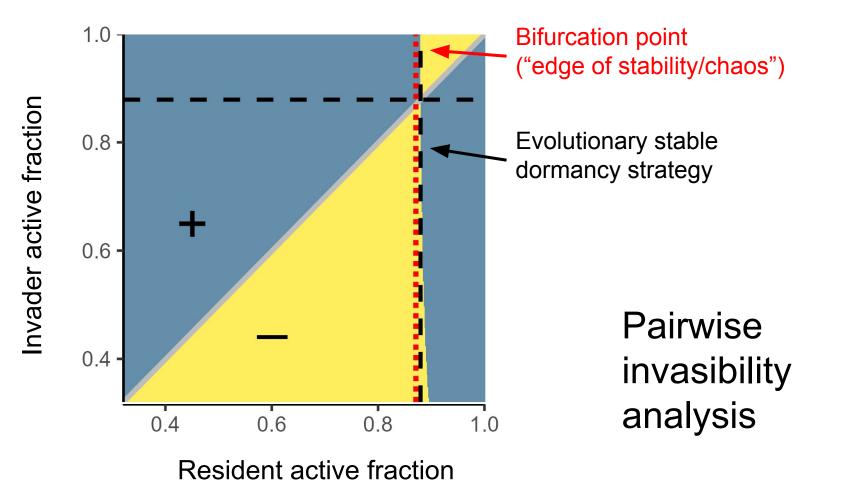






Four results

- 1) Dormancy stabilizes dynamics by lowering the effective growth rate
- 2) Dormancy is favored when population dynamics fluctuate
- 3) Strategies with and without dormancy can coexist
- 4) Long-term evolution of dormancy drives populations to the "edge of chaos"



Extrinsic variability

- Temperature
- Precipitation
- Resource pulses
- ...

Overcompensation in discrete time population dynamics (pre-print online now)

Multispecies interactions in continuous time (work in progress)

Intrinsic variability

Multiple species, continuous time

$$egin{aligned} rac{dn_i}{dt} &= f_i(\mathbf{n})n_i - lpha_i n_i + eta_i q_i \ rac{dq_i}{dt} &= lpha_i n_i - eta_i q_i - m q_i \quad i = 1, 2, \dots, S \end{aligned}$$

Multiple species, continuous time

Resident
community
(fluctuating)
$$\frac{dn_i}{dt} = f_i(\mathbf{n})n_i \quad i = 1, 2, \dots, S$$

$$\frac{dn_{j'}}{dt} = f_j(\mathbf{n})n_{j'} - \alpha n_{j'} + \beta q_{j'}$$
species j with
dormancy
$$\frac{dq_{j'}}{dt} = \alpha n_{j'} - \beta q_{j'} - mq_{j'}$$

Dormancy advantage

- In the limit $m \rightarrow 0$, dormancy can always invade fluctuating resident dynamics
- This is a special case of dispersal-induced growth (DIG)!
- Interesting limiting cases: α , $\beta >> 0$ (dormant fraction tracks growth rate) and α , $\beta \approx 0$ (time-averaging)

Dormancy advantage

- In the limit $m \rightarrow 0$, dormancy can always invade fluctuating resident dynamics
- This is a special case of dispersal-induced growth (DIG)!
- Interesting limiting cases: α, β >> 0 (dormant fraction tracks growth rate) and α, β ≈ 0 (time-averaging)

- Change variables: N(t) = n(t) + q(t) (total population) and R(t) = n(t) / N(t) (active fraction)
- Define $\varepsilon = 1 / \beta$ and $\gamma = \alpha / \beta = constant$

- Change variables: N(t) = n(t) + q(t) (total population) and R(t) = n(t) / N(t) (active fraction)
- Define $\varepsilon = 1 / \beta$ and $\gamma = \alpha / \beta = \text{constant}$
- As $\varepsilon \to 0$, the dynamics of active *R* are fast we can take *R* to be at quasi-equilibrium:

$$R(f) = rac{\sqrt{(1+\gamma-\epsilon f)^2+4\epsilon f}-(1+\gamma-\epsilon f)}{2\epsilon f}$$

- Change variables: N(t) = n(t) + q(t) (total population) and R(t) = n(t) / N(t) (active fraction)
- Define $\varepsilon = 1 / \beta$ and $\gamma = \alpha / \beta = constant$
- As $\varepsilon \to 0$, the dynamics of active *R* are fast we can take *R* to be at quasi-equilibrium:

$$R(f) = rac{\sqrt{(1+\gamma-\epsilon f)^2+4\epsilon f}-(1+\gamma-\epsilon f)}{2\epsilon f}$$

• Dynamics of *N* are simple:

$$rac{dN}{dt} = f(t) \, R(f(t)) \, N$$

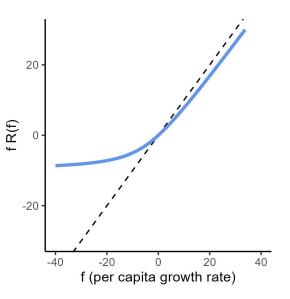
- Change variables: N(t) = n(t) + q(t) (total population) and R(t) = n(t) / N(t) (active fraction)
- Define $\varepsilon = 1 / \beta$ and $\gamma = \alpha / \beta = constant$
- As $\varepsilon \to 0$, the dynamics of active *R* are fast we can take *R* to be at quasi-equilibrium:

$$R(f) = rac{\sqrt{(1+\gamma-\epsilon f)^2+4\epsilon f}-(1+\gamma-\epsilon f)}{2\epsilon f}$$

• Dynamics of *N* are simple:

$$rac{dN}{dt} = f(t) \, R(f(t)) \, N$$

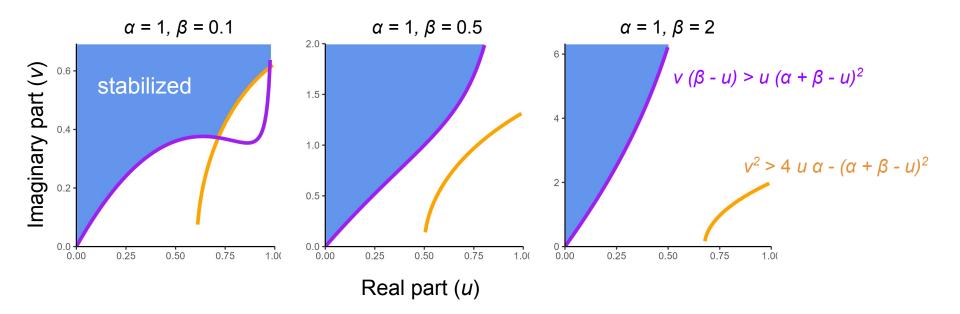
Realized per capita growth rate is convex in *f*



$$egin{aligned} rac{dn_i}{dt} &= f_i(\mathbf{n})n_i - lpha_i n_i + eta_i q_i \ rac{dq_i}{dt} &= lpha_i n_i - eta_i q_i - m q_i \quad i = 1, 2, \dots, S \end{aligned}$$

- (Hadeler 2008): In general, dormancy can **stabilize or destabilize** dynamics
- If $\alpha_i = \alpha$, $\beta_i = \beta$ for all *i*, dormancy stabilizes
 - If u ± iv, is an eigenvalue of the community matrix without dormancy and u > 0, then the corresponding eigenvalues with dormancy have negative real part iff

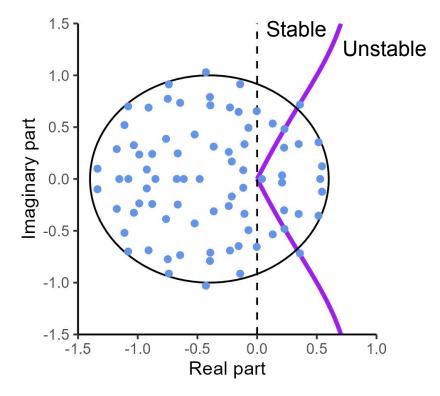
 $v^2 > 4 \ u \ \alpha - (\alpha + \beta - u)^2 \text{ and } v \ (\beta - u) > u \ (\alpha + \beta - u)^2$





Stabilization requires $\alpha > u$ and v large compared to u

Which dynamics can dormancy stabilize?

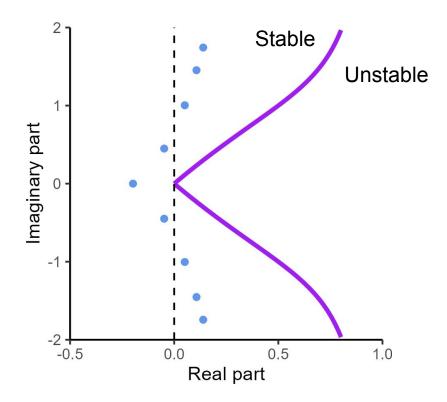


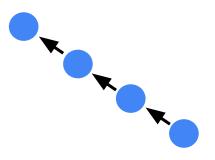
Interaction matrices described by elliptic ensembles **cannot** generally be stabilized by dormancy

Which dynamics can dormancy stabilize?

- Dormancy can stabilize against Hopf bifurcations
 - Associated with food chain/web dynamics
- Bilinsky and Hadeler (2009) showed that dormancy can stabilize MacArthur-Rosenzweig predator-prey dynamics

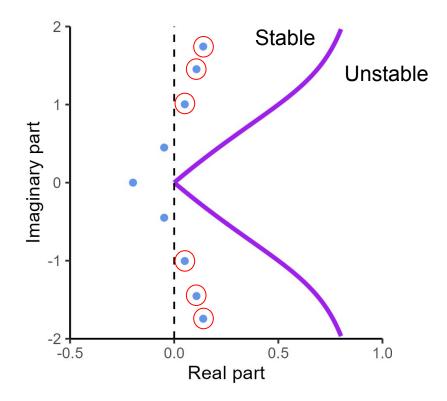
Linear food chain

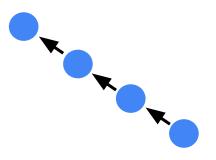




Generic food chain model (after Gross et al. 2005) exhibits chaotic dynamics that can be stabilized by dormancy

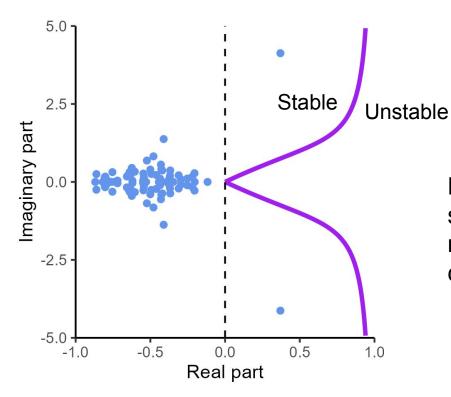
Linear food chain

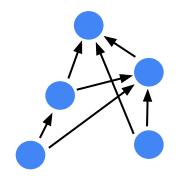




Generic food chain model (after Gross et al. 2005) exhibits chaotic dynamics that can be stabilized by dormancy

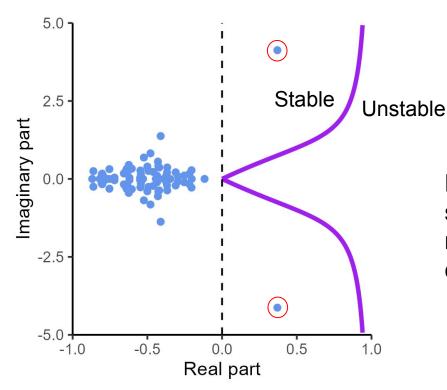
Random food web

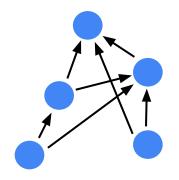




Random food webs with hierarchical structure (after Allesina et al. 2015) may have outlying eigenvalues that can be stabilized by dormancy

Random food web





Random food webs with hierarchical structure (after Allesina et al. 2015) may have outlying eigenvalues that can be stabilized by dormancy

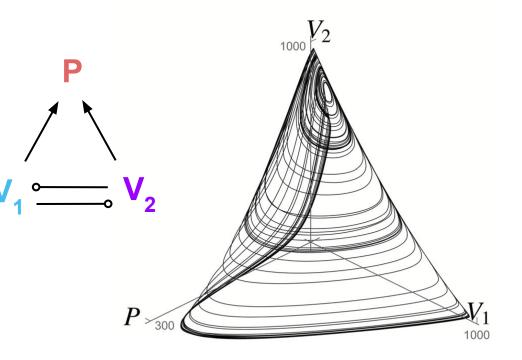
Evolution of dormancy in a single species

- Hadeler's analysis applies to systems with highly symmetric dormancy
- In general, determining stabilization by dormancy is hard
- We are most interested in cases where dormancy evolves in one species
- Open question: Can we characterize this case?

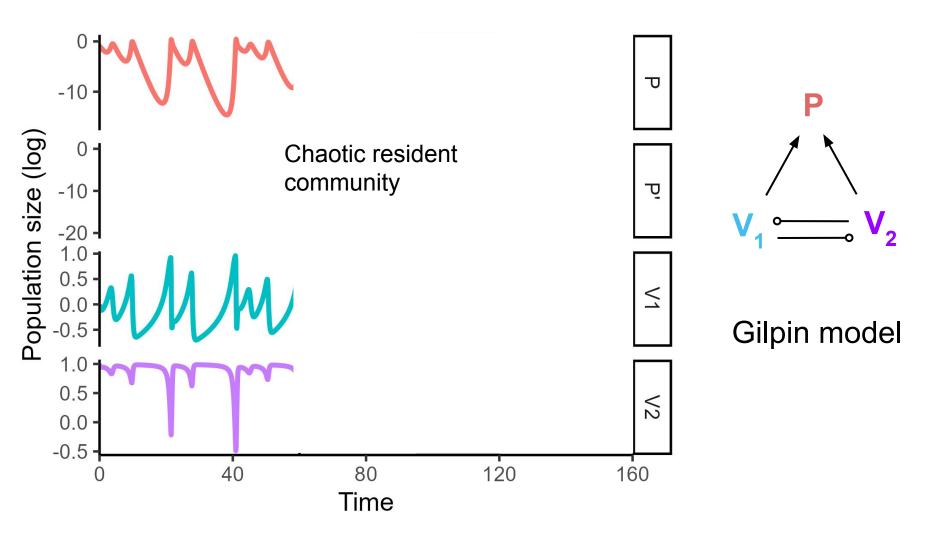
Evolution of dormancy in a single species

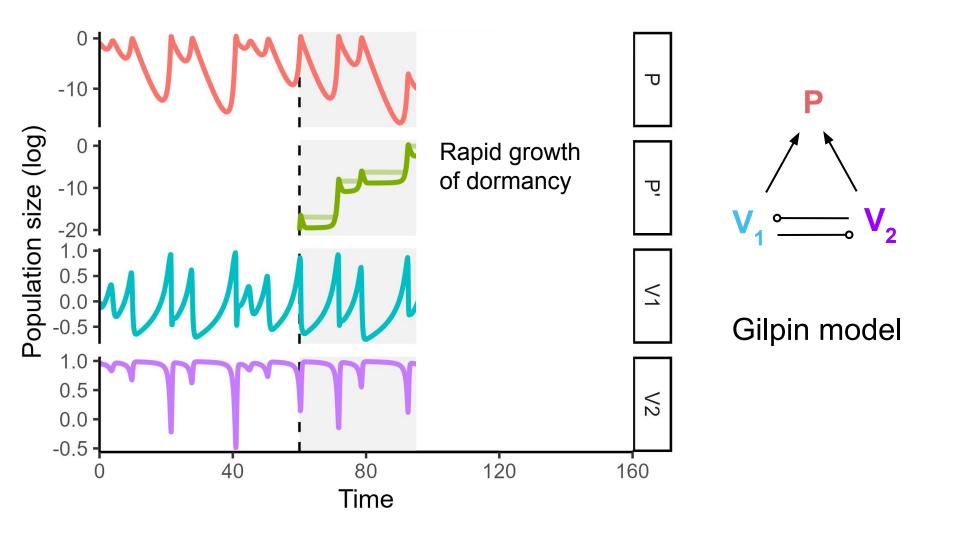
Simple food web model (Gilpin 1979):

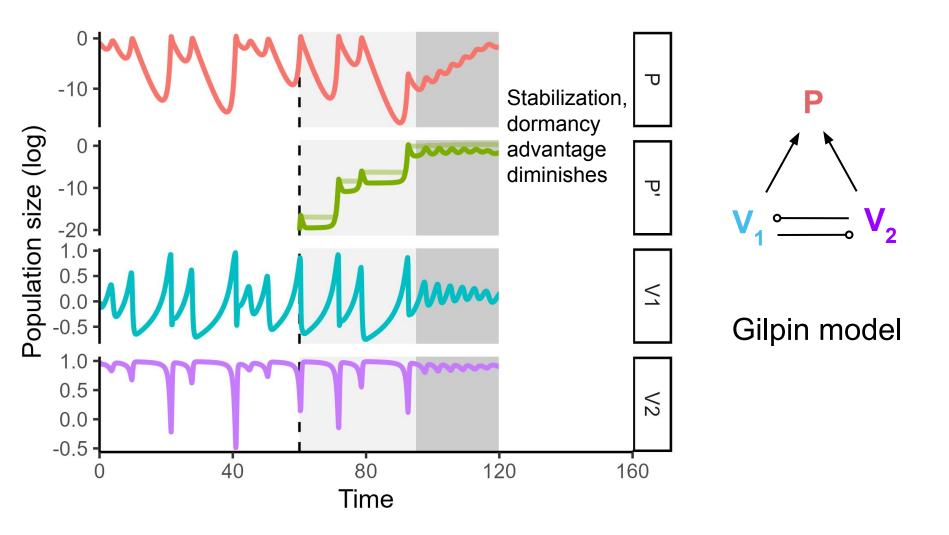
- One predator (P)
- Two competing prey (V₁ and V₂)
- Lotka-Volterra dynamics

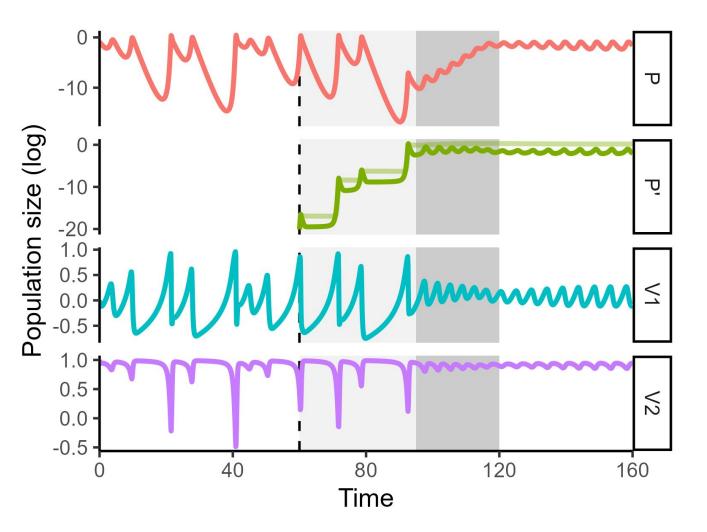


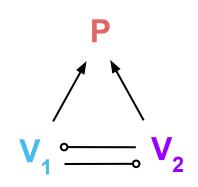
Robey et al. (2024)











Gilpin model

Some conclusions

- Fluctuating dynamics should be vulnerable to invasion and suppression by dormancy
- Trade-offs between dormancy strategies can enable **coexistence**
- Evolution of dormancy may drive dynamics to the "edge of stability"
- In multispecies communities, fluctuating dynamics favor evolution of dormancy, but dormancy is only sometimes stabilizing
 - Dormancy stabilizes trophic dynamics
 - Rich, open questions related to interaction of dormancy with network structure

Thanks for listening!

Co-authors:

David Vasseur Pincelli Hull

Thanks to Hull and Vasseur labs for discussions

THE PREPRINT SERVER FOR BIOLOGY

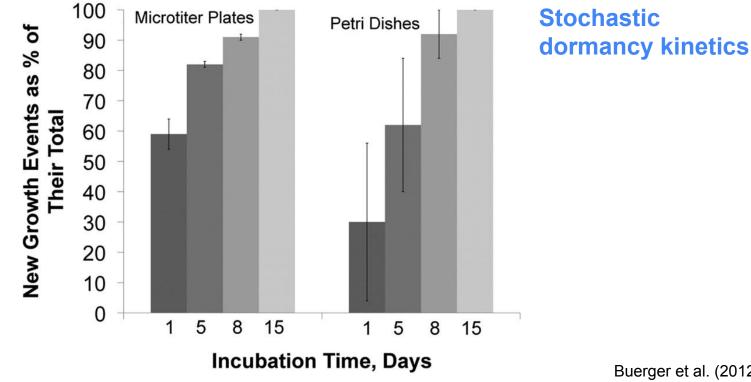
New Results

A Follow this preprint

Stabilization of fluctuating population dynamics via the evolution of dormancy

David Vasseur, Pincelli M. Hull doi: https://doi.org/10.1101/2024.09.12.612663

Dormancy as a bet-hedging strategy



Buerger et al. (2012) App. and Env. Microbio.