ECOLOGICAL NETWORKS AND COMPLEX SYSTEMS
GUSTAVE EIFFEL UNIVERSITY, 28-29th October, 2024

How do non-Gaussian imteractions | sandro Azacle

Department of Physics and

drive patterns and coexistence N s onomy “G. Galileo”,
larg E GCO Systems? University of Padua & INFN

NATIONAL
(betator oF BIODIVERSITY
I&ﬁerdiscip%inary FUTURE CENTER
ySics

Finanziato . .
dall'Unione europea ".l [taliadomani

NextGenerationEU



The coexistence problem is
as old as
the entangled bank

“It is interesting to contemplate an entangled bank, clothed with many plants
of many kinds, with birds singing on the bushes, with various insects flitting
about, and with worms crawling through the damp earth, and to reflect that

these elaborately constructed forms, so different from each other, and
dependent on each other in so complex a manner,
have all been produced by laws acting around us.”

—— € Durwm On the Origimof Species 1859



[s species coexistence an emergent property of communities?
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multi-species coexistence is an additive affair,
and all of the coexisting members of a
community must also coexist as pairs when
isolated from the community context.

Friedman et al., Nat. Ecol. Evol., 2017; Letten et al., Ecol. Letters,
2019; Meroz et al., Nat. Comm., 2020.
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and all of the coexisting members of a
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isolated from the community context.

Friedman et al., Nat. Ecol. Evol., 2017; Letten et al., Ecol. Letters,
2019; Meroz et al., Nat. Comm., 2020.

Chang-Yu C. et al., Science 2023

coexistence in a multi-species community
is a property of the community, which is not
exhibited by its most elementary units of
coexistence, pairs of species in isolation
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Chang-Yu C. et al., Science 2023

multi-species coexistence is an additive affair,

and all of the coexisting members of a coexistence in a multi-species community
community must also coexist as pairs when is a property of the community, which is not
isolated from the community context. exhibited by its most elementary units of

Friedman et al., Nat. Ecol. Evol., 2017; Letten et al., Ecol. Letters, CQGXlStenCQ, e of el isolation

2019; Meroz et al., Nat. Comm., 2020.

“The best possible knowledge of a whole does not necessarily include

the best possible knowledge of all its parts.”
— E. Schrodinger, Discussion of prob. relations..., 1935 —



Community structure from simple assembly rules?

A B A and B coexist

Enterobacter aerogenes (Ea)
~—< Serratia marcescens (Sm)

Time Pseudomonas citronellolis (Pci)
3 ’—@domonas putida (Pp)
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Pseudomonas chlororaphis (Pch)
m‘ Pseudomonas fluorescens (Pf) =

B and C coexist Pseudomonas veronii (Pv)
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Dynamics of
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S Friedman et al., Nat. Ecol. Evol., 2017.
fheopieaney Assembly rule: Letten et al., Ecol. Letters, 2019.
Q species that all coexist with each other in pairs Meroz et al., Nat. Comm., 2020.
(" will coexist in community, whereas species
; that are excluded by any of the surviving 89.5% of trios were predicted

species will go extinct.

by pairwise outcome!



Community context is required for species pairs to coexist
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Emergent coexistence in multispecies
microbial communities
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71.6% of the pairs failed to coexist in the
absence of the other community members.
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71.6% of the pairs failed to coexist in the
absence of the other community members.

Given that both hypotheses can be correct
in different communities, under which
conditions each is most likely to occur?

higher-order interactions?
specific network of pairwise interactions?
evolution of new species interactions?



Can we use the Generalised Lotka-Volterra equations

and investigate coexistence?

N interacting species: Generalised Lotka- Volterra (GLV) equations

=

“ you can “describe” competition, mutualism, predator-prey,
random interactions...
but the interaction matrix is unknown;

= interactions are direct and pairwise (random encounters);

+ are interactions mediated by resources?



Can we use the Generalised Lotka-Volterra equations

and investigate coexistence?

( N \ * you can “describe” competition, mutualism, predator-prey,
: random interactions...
xi(t ) o 'xi(t ) Vi I z / aijx °(t ) but the interaction matrix is unknown;

\ = ) + interactions are direct and pairwise (random encounters);

+ are interactions mediated by resources?

What kind of properties can we assume for the interaction couplings?
Inference for the interactions is difficult for large N,

but statistically one can make some assumptions.
In natural communities N is typically large, so one wonders

what is the “typical behaviour of the GLV as N — oo, ... typical patterns

[s it possible to do a statistical mechanics of GLV?



Can we do a statistical mechanics of GLV?

BULLETIN OF
MATHEMATICAL BIOPHYSICS
VOLUME 19, 1957

(0 =xO|r+ ) ax @)

A STATISTICAL MECHANICS OF INTERACTING
BIOLOGICAL SPECIES

EDWARD H. KERNER
PHYSICS DEPARTMENT
UNIVERSITY OF BUFFALO, BUFFALO, NEW YORK

The system of differential equations proposed by V. Volterra, de-
scribing the variation in time of the populations ¥, of interacting species
in a biological association, admits a Liouville’s theorem (when log ¥, are
used as variables) and a universal integral of ‘‘motion.’”’ Gibbs’ micro-
canonical and canonical ensembles can then provide a thermodynamic
description of the association in the large. The ‘‘temperature’’ measures
in one number common to all species the mean-square deviations of the
N; from their average values. There are several equipartition theorems,
susceptible of direct experimental test, a theorem on the flow of ‘‘heat®’
(the conserved quantity in an isolated association) between two weakly
coupled associations at different temperatures, a Dulong-Petit law for
the heat capacity, and an analog of the second law of thermodynamics
expressing the tendency of an association to decline into an equilibrium
state of maximal entropy. The analog of the Maxwell-Boltzmann law is a
distribution of intrinsic abundance for each species which has been
successfully used by ecologists for interpreting experimental data. A
true thermodynamics develops upon introducing the idea of work done on
an association through a variation of the variables (such as physical
temperature) defining the physical and chemical environment. An ergodic
theorem is suggested by the agreement of ensemble and time averages in
the one case where the latter may be found explicitly.
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A STATISTICAL MECHANICS OF INTERACTING
BIOLOGICAL SPECIES

EDWARD U. KERNER One can write GLV canonically (Hamilton egs.)
PHYSICS DEPARTMENT
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The system of differential equations proposed by V. Volterra, de-
scribing the variation in time of the populations ¥, of interacting species

in a biological associstion, admits a Liouville’s theorem (when log N, are the "tempemture" measures the mean-square
used as variables) and a universal integral of ‘‘motion.’”’ Gibbs’ micro-
canonical and canonical ensembles can then provide a thermodynamic deviations Of the xi from their average Values

description of the association in the large. The ‘‘temperature’’ measures
in one number common to all species the mean-square deviations of the
N; from their average values. There are several equipartition theorems,

susceptible of direct experimental test, a theorem on the flow of ‘‘heat®’ L 1
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expressing the tendency of an association to decline into an equilibrium . . . . . .

state of maximal entropy. The analog of the Maxwell-Boltzmann law is a WhICh 1S glven by d Gamma dlStrlbutlon
distribution of intrinsic abundance for each species which has been

successfully used by ecologists for interpreting experimental data. A

true thermodynamics develops upon introducing the idea of work done on x

an association through a variation of the variables (such as physical BUT you can dO thls Only When Clre—r— )=
temperature) defining the physical and chemical environment. An ergodic % l] JU
theorem is suggested by the agreement of ensemble and time averages in

the one case where the latter may be found explicitly.



Can we do a statistical mechanics of GLV?
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One can write GLV canonically (Hamilton egs.)
and define a Gibbs ensemble

VOLUME 43, NUMBER 2, PART 1 APRIL 1971

e e oo = On the Volterra and Other Nonlinear Models

N; from their average values. T

susceptible of direct experiment: Of IIlt era Ctin g P O pul a t i on S*

(the conserved quantity in an is
coupled associafions at differer

the heat capacity, and an analo NARENDRA S. GOEL, SAMARESH C. MAITRA, AND ELLIOTT W. MONTROLL
expressing the tendency of an a: Institute for Fundamental Studies, Department of Physics and Astronomy, The University of Rochester,
state of maximal entropy. The a ' Rochester, New York 14627

distribution of intrinsic abunda __. _.. .. oL i o e

successfully used by ecologists for interpreting experimental data. A
true thermodynamics develops upon introducing the idea of work done on
an association through a variation of the variables (such as physical
temperature) defining the physical and chemical environment. An ergodic
theorem is suggested by the agreement of ensemble and time averages in
the one case where the latter may be found explicitly.

BUT, you can do this only when a;; = — @,

Jl



Interactions in the Generalised Lotka-Volterra equations

i(1) = x(0)| r; + Zal] x(f)

j=1
Properties of the interaction couplings for large N (quenched noise):

Gk — 2 | - 7 for simplicity r, = 1 and a;, = — 1.

ij N \/N ij

where

<Zij> =0 <Zl]Zlm> - 5]m uncorrelated Gaussian r.v.

or more generally

<Zz] ]z> =Yy ... and zero for all other indexes
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Interactions in the Generalised Lotka-Volterra equations
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Interactions in the Generalised Lotka-Volterra equations
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Dynamical Mean Field Theory of GLV

N
i(f) = xi(t)[l — X+ ) (1)
JFI

a; =—+—2z; (z;) =0 (2iiZim) = 60



Dynamical Mean Field Theory of GLV

N
50 =x O 1= x4+ ) (o)
JFI

ci= - ﬁzif (z) =0 <szsz> = 010,
N — oo

T. Galla, arxiv.org/abs/2405.14289

Equation for a representative species (neutral limit with random self-consistent environment):

, M(1) = (x(1))
x(t) = x(t) [1 = x(t) oI ﬂM(t) it n(t)] <n(t)n(t’t)> = o*(x()x(1")

1
F(Eeanty) [1 =)t [Cdnr }'GZJ dr'G(t,t)x(t') + n(t)] interactions with correlations —> x is non-Markovian
0



Dynamical Mean Field Theory: the phase diagram

( i \
x(0) = x(O]| r; + Z al-jxj(t)
. 5
i(t) = x(0)[1 = x(2) + uM(2) + 1(2)| L }
U o
CXU':: N i ]\]za]
O = \/N((a,yz- — (@) -
* >‘1.5 i\extinct é 01 _
unboundedlgrowth SE e s sy
— >
multiple attractors = e !

0 0.5 1 1.5 2 2.5
abundance

: : | >
-2 -1 0 1 p = N(a;)
Bunin G, PRE (2017); Galla T., EPL (2018); Biroli G. et al., NJP (2018); Roy F. et al., JPA (2019);
Altieri A. et al., PRL (2021)...



Dynamical Mean Field Theory: are we happy?
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Truncated Gaussians have not been observed in
natural systems;

Empirical patterns have not such a level of
universality (mean and variance are not
enough!)

There are models in which parameters are
non-negative or non-positive by definition;
sparse interactions;
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GLV may vary with time:
what are the consequences?



Dynamical Mean Field Theory: are we happy?
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what are the consequences?

to this case?



DMEFT: Non-Gaussian interactions

What happens for more general distributions?

Py(a) = ™ T o)l
\/271'(72/]\7 <a2> - <(X>2 S 0'2/N
—1+6 (a) = u(N) = u/N
Py(a) = gy ¢~ 1o=RIDIIP

25T (5) (a®) — (a)* = p76(6 + 1) = PN )*S(N)(BWN) + 1)



DMEFT: Non-Gaussian interactions

What happens for more general distributions?

Py(a) = e )z uly
N == 262/N
\/271'(72/]\7 <a2> o <(X>2 o 0'2/N
& s : (@) = u(N) = u/N
P )= | /f_(N)_l e~ la—nM)|/p : - =
235T(5) (@?) — (@)% = B?6(5 + 1) = BINY’S(N)(BN) + 1)

l what scaling of pars?

— different functions B(N) and 6(N) give the same var(a).
JW Baron et al., Phys. Rev. Lett. (2023) — higher cumulants are no longer zero



DMEFT: Non-Gaussian interactions

Instead of considering only the first two cumulants, we introduce a distribution of the
off-diagonal coefficients, Py(c;;), whose characteristic function scales with N as

lim N In <[da PN(a)e_i“Z> = F(7)

N—+

where F(z) is a complex function which is analytic at least at z=0, and F(0)=0. F(z)/N is the
cumulant-generating function (because the ch.f. of a pdf is the exponential of its c.g.f.)



DMEFT: Non-Gaussian interactions

Instead of considering only the first two cumulants, we introduce a distribution of the
off-diagonal coefficients, Py(c;;), whose characteristic function scales with N as

N—+

lim N In <[da PN(a)e_i“Z> = F(7)

where F(z) is a complex function which is analytic at least at z=0, and F(0)=0. F(z)/N is the
cumulant-generating function (because the ch.f. of a pdf is the exponential of its c.g.f.)

When F(z) = — iuz — 6%z%/2 (higher cumulants are zero), we recover the assumptions
of the standard DMFT:
1 _(a=piN)?
PN(a) — €  202/N
\/2762/N

which means

U
aij=N+

(o)
<o
VN



DMEFT: Non-Gaussian interactions

How do we scale the parameters with N in order to get a meaningful F(z)?
(Remember Marcinkiewicz's theorem: F(z) is either at most a polynomial of degree two
or an infinite power series)

|a i M/N|_1+S(N)

e e ulEED
2PN YN (6(N))

Py(a) =

scaling of pars?

i i



DMEFT: Non-Gaussian interactions

How do we scale the parameters with N in order to get a meaningful F(z)?
(Remember Marcinkiewicz's theorem: F(z) is either at most a polynomial of degree two
or an infinite power series)

|a i M/N|_1+S(N)

e e ulEED
2PN YN (6(N))

Py(a) =

scaling of pars

/

5(N) = 6 and B(N) = p/A/N

then we get

F(2) = — iuz — p%6(6 + 1)z°/2



DMEFT: Non-Gaussian interactions

How do we scale the parameters with N in order to get a meaningful F(z)?
(Remember Marcinkiewicz's theorem: F(z) is either at most a polynomial of degree two
or an infinite power series)

|a s M/N|_1+S(N)
2B(N)YPMT(8(N))

Py(a) = ¢~ la—pINI/BN)

scaling of pars

.

5(N) = 5 and S(N) = IA/N 6(N) = 6/N and B(N) = f8

then we get instead we get

, )
F(z) = — iuz — B*6(8 + 1)z2/2 F(z) = — ipz = > log(1 + 5°2°)




DMEFT: Non-Gaussian interactions

N interacting species

N
50 =x O 1= x4+ ) (o)
JFI

Fl=1anda”=—1.

N—>+o0

lim N In <Jda PN(a)e_i“Z> = F(z)



DMEFT: Non-Gaussian interactions

N interacting species

N
50 =x O 1= x4+ ) (o)
JFI

Fl=1anda”=—1.

N—>+o0

lim N In <Jda PN(a)e‘i“Z> = F(7)

Equation for a representative species:

(1) = x(0)|1 = x(©) + pM(@) + n(1)]

no off-diagonal correlations



DMEFT: Non-Gaussian interactions

Equation for a representative species:

(1) = x(0)|1 = x() + uM(t) + n(@)|

M(t) = (x(2))

£ 4 — non-Gaussian coloured noise
I I S I I
< " (tk»C =1i'b r’ ' < x(tk» — self-consistent n-point temporal
=1 = correlations

where r=1,2,... and b, is the coefficient of the series

o= ) b

r>0



DMEFT: Non-Gaussian interactions

Assuming that there exists a fixed point in the GLV and in the DMFT eq., i.e.,, lim x(¥) = x*

I— 00

0 =x* [1—x*+,uM+77*]

When [...]>0, the stable solution is

XH*) = 1+ uM + n*

N

and 7* is a (self-consistent) stationary noise that satisfies (4 = 0):

d (0.9)
P(n*) = J 2—Z exp {iZﬂ* + J dn'P,(n)F(z + zn’)}

R <7 £



DMEFT: Non-Gaussian interactions

The modified GLV equation (f > 1)

ij
with exponent a (i.i.d, i # j)

N
x(1) = xl-(t)[l — x4+ ) a0
the ch.f. is exp(—7|z|%)

a.. ~ a-stable distribution
JFl



DMEFT: Non-Gaussian interactions

The modified GLV equation (f > 1)

N
.. ~ a-stable distribution
Tl LY aal i
z( ) l( ) i Z il J( ) with exponent a (i.i.d, i # )
JF the ch.f. is exp(—7|z|%)

The new DMFT predicts (exact solution) a distribution of surviving populations:

05l
| ™\
£ oafy ’ P o= ﬁxﬁ_lP =186~ "
e \ oy i
Ez 0.3} [\
o \ asx =1
L 0.2}
o
0.1}
: E. Ser-Giacomi et al., Nat. Eco. Evo.(2018)
. e — T ﬁﬂ'l@? E. Mallmin et al., PNAS (2024)

population densities, x



DMEFT: Non-Gaussian interactions

In the sparse case of the GLV system, we assume that

Pula) = (1 = D)i(a) +-—-0(a)

a species is connected to other ¢ species on average and @Q(«) is the distribution of the non-
zero interactions;



DMEFT: Non-Gaussian interactions

In the sparse case of the GLV system, we assume that

Py(@) = (1 - £)5(a@) + < 6(a)
a species is connected to other ¢ species on average and @Q(«) is the distribution of the non-
zero interactions;
when c is small and x>1 (1 is the carrying capacity) we obtain
P oo 1)

we can statistically infer (some) interactions from a macroscopic pattern

L. Poley et al., https://arxiv.org/abs/2404.08600; J. 11 Park et al., https://arxiv.org/abs/2403.15730;
E. Aguirre-Lopez, https://arxiv.org/abs/2404.11164; F. Metz, https://arxiv.org/abs/2406.06346



DMEFT: Non-Gaussian interactions

Brief summary:

& The distribution of species abundances is not
a Gaussian; shapes are much more realistic

& The distribution of species abundances
depends on all cumulants;

& It canbe a power law or other (more
realistic) curves;

& There is a link between microscopic
interactions and macroscopic patterns (SAD);

& gDMFT allows to introduce sparse

interactions;



DMEFT: Non-Gaussian interactions

0 = VN(@3) = ()"

Brief summary:

ﬁ The distribution of species abundances is not
a Gaussian; shapes are much more realistic

@ The distribution of species abundances
depends on all cumulants;

@ [t can be a power law or other (more
realistic) curves;

& There is a link between microscopic
interactions and macroscopic patterns (SAD);

& gDMFT allows to introduce sparse
interactions;

& The phase diagram is more complicated



DMEFT: Non-Gaussian interactions

Brief summary:

: 0= \/N(<ai]2'> = <alj>2)1/2uﬁ»

P

1’, £ ‘
4;& « o g ol

- W X" S i ;

b

The distribution of species abundances is not
a Gaussian; shapes are much more realistic
The distribution of species abundances
depends on all cumulants;

[t can be a power law or other (more
realistic) curves;

There is a link between microscopic
interactions and macroscopic patterns (SAD);
gDMFT allows to introduce sparse
interactions;

The phase diagram is more complicated

S.A. & A. Maritan, Phys. Rev. Lett. (2024)



Do interactions vary with time?

LETTER

doi:10.1038/nature25504

Fluctuating interaction network and time-varying
stability of a natural fish community

Masayuki Ushio»%*#, Chih-hao Hsieh®®, Reiji Masuda®, Ethan R Deyle?, Hao Ye®'°, Chun- Wei Chang®, George Sugihara® &
Michio Kondoh!



Do interactions vary with time?

LETTER

doi:10.1038/nature25504

Fluctuating interaction network and time-varying
stability of a natural fish community

Masayuki Ushio®%%#, Chih-hao Hsieh>®’, Reiji Masuda®, Ethan R Deyle’, Hao Ye®', Chun- Wei Chang®, George Sugihara® &
Michio Kondoh'

S. pinguis — T. japonicus

T. japonicus — S. pinguis

T. japonicus — Aurelia sp.

H. tenuispinis — P. poecilepterus
P. poecilepterus — S. cheni

P. japonicus — P. sieboldi

T. trigonocephalus — C. gulosus
S. fuscescens — P. poecilepterus
G. punctata — P. zonoleucus

P. japonicus — T. trigonocephalus
R. ercodes — T. japonicus

P. zonoleucus — R. ercodes

Rudarius ercodes

Interaction strength

P. zonoleucus — C. gulosus

P. zonoleucus — P. sieboldi

Siganus fuscescens

b
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S 2

[

=)

g 1
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Do interactions vary with time?

What happens if we introduce a simple stochastic time dependence in the species” interactions?

e \
x(t) = x O] r; + Z al.j(t)xj(t) for simplicityr =l and - = — |-
] )




Do interactions vary with time?

What happens if we introduce a simple stochastic time dependence in the species” interactions?

( )

N
x(t) = x O] r; + Z al.j(t)xj(t) for simplicityrr = land a- — 1
] )
interaction couplings (annealed noise): al.j(t) — L le(t)

VN

ek 20/ag
e
2z

where (Zij(t)) —4] <Zij(t)zlm(t,)> = 5i,k5j,l



Populations x;(t)

Do interactions vary with time?

What happens if we introduce a simple stochastic time dependence in the species” interactions?

() = xO| 1+ ) a (Ox(0) for simplicity 7, = 1 and a;; = — 1.
L )
U o
interaction couplings (annealed noise): aij(t) = — 4+ \/_ le(t)
N
Ly
whete  (z(0) =0 (0anl)) = 8,0, ————e "
7=10,0 = 0.6
4 1 4
3 5 ]
2 1 ) |
H 1 K\ =
S T
N
0 4 04




Do interactions vary with time?

What happens if we introduce a simple stochastic time dependence in the species” interactions?

)
N
fCi(I) — Xi(t) oot Z al.j(t)xj(l‘) for simplicityr =l and - = — |-
7= )
interaction couplings (annealed noise): aij(t) T Zij(t)

JN

White noise limit 7 = 0

four time series from the
simulation of GLV
with N=30,y =0ando =1

Populations

...1no extinctions!

0 2000 4000 6000 8000 Time



time-dependent interactions: stationary distributions

We can apply standard DMFT techniques for obtaining the mean field equation:
(1) = x(O)|1 — x(r) + uM(t) + n(?)]

1+ 27/1
= 2 e~ A u(e)x(e))

M(t) = (x(2)) (ntn(t)) = o?



time-dependent interactions: stationary distributions

We can apply standard DMFT techniques for obtaining the mean field equation:
(1) = x(O)|1 — x(r) + uM(t) + n(?)]

1 +27/7
S (x()x(t'))
2T

M(t) = (x(2)) (ntn(t)) = o?

at stationarity (with some approximations too):

= Lor 3
Loy oy 7

Parameters are calculated self-consistently and depend on y, 7 and o.
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time-dependent interactions: stationary distributions
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time-dependent interactions: stationary distributions

We can apply standard DMFT techniques for obtaining the mean field equation:

(1) = x(O)|1 — x(r) + uM(t) + n(?)]

M(1) = (x(1)) (nOn(t)) = o*(x()*)5(t — ')



time-dependent interactions: stationary distributions

We can apply standard DMFT techniques for obtaining the mean field equation:

(1) = x(O)|1 — x(r) + uM(t) + n(?)]
M) = {x(1)) (nOn()) = 6*(x(1)*)8(t — t')

which leads to a self-consistent Fokker-Planck equation:

2 7
D i i <x2(” o

with stationary distribution (Gamma distribution)

0 2 2(1 + p(x))
p*(x) = %X_H(Se_ﬁx = 52(x2) 7= 52(x2)

T — T




time-dependent interactions: stationary distributions

5 ;A )
p*(X) s 'B_x—1+5e—ﬂx 0-2<x2> 0-2<x2>

PDF(x)

0 e e
population x

GLV



time-dependent interactions: stationary distributions

5 s 2 b))
Kr) = L g1+, o%(x?) 0%(x?)

Empirical patterns

Gamma distributions describe well
surveys of microbial communities,

from Arctic oceans to zebras’ guts,

and also abundances of species

e in forest communities...
E
Annealed = = Quenched
oz 100
o BCI &
102 10-* LT Caribbean
Coral Reef

0 1 2 3 4 5 6

population x §
% 19-4 Xiao Y. et al., Nat.Com. (2017);
Grilli J., Nat.Com. (2020);
GLV i S.A.etal,
Rev. Mod. Phys. (2016)
¥0zS

10° 10 10 10° 10*
z (log scale)



time-dependent interactions: stationary distributions

5 2 5 2(1 + u(x))
5 = —_
p*(X) s 'B x—1+5e—ﬂx 0-2<x2> 0-2<x2>
1'(0)
T — T “H7
Empirical patterns
5 : : : : : _ Gamma distributions describe well
surveys of microbial communities,
0.8 from Arctic oceans to zebras’ guts,
= 06 and also abundances of species
E ' in forest communities...
a 04i Annealed = = Quenched
T 100
0.2} - BCI &
102 10-* LLELD Caribbean
0 : Coral Reef
0 1 2 : 3 4 5 6 ,&?10—3
population x =
% i Xiao Y. et al., Nat.Com. (2017);
GLV S. Suweis et al., Phys. Rev. Lett. (2024) Grilli J., Nat.Com. (2020);
i) S.A.etal.,
lots of rare species! Rev. Mod. Phys. (2016)

i)
10° 10 10 10 10*
z (log scale)
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The vast bulk of biodiversity is very rare: why?
Apparently, there are no traits that allow abundant species to escape rarity;
superiority in competition for resources is not necessary for dominance!



ECOLOGY '.)
PNAS RESEARCH ARTICLE | ‘oo o o

Check for
updates

A tiny fraction of all species forms most of nature: Rarity as a
sticky state

Egbert H. van Nes®' &, Diego G. F. Pujoni®, Sudarshan A. Shetty", Gerben Straatsma?® Willem M. de Vos““@, and Marten Scheffer®'?

Contributed by Marten Scheffer; received December 23, 2022; accepted November 11, 2023; reviewed by Tadashi Fukami and Jonathan M. Levine

Some evidences: @ in the human microbiome different species can take
dominant positions over time;

& dominance by a single species is common but short-lived;

% rare species may become dominant with unpredictable
alternations both under controlled laboratory conditions and
in natural communities;
while the presence of a functional group is predictable, the
identity of the dominant species is not;

*€c
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Some evidences: @ in the human microbiome different species can take
dominant positions over time;

& dominance by a single species is common but short-lived;

% rare species may become dominant with unpredictable
alternations both under controlled laboratory conditions and
in natural communities;
while the presence of a functional group is predictable, the
identity of the dominant species is not;

*€c

Functional redundancy and near neutrality:

& species within a functional group share a single niche and within this niche species
are near neutral. This leads to instability of dominance by functionally similar species;

& stochastic origin of hyper-dominance: because fluctuations are proportional to
abundances (multiplicative noise), the rates of change of rare species are slow;

& rare species may serve as an insurance to maintain function in times of adverse

events, because of their different sensitivity to stressors and natural enemies;



The MacArthur’s consumer-resource model:

a more realistic way to account for coexistence
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MacArthur, R. H., Theor.
> o=1 Pop. Bio., 1, 1-11, 1970




The MacArthur’s consumer-resource model

max consumption rate of species ¢
own the i-th resource (metabolic s?:ra&egv)

pop densiby _ Adeath rate
0‘{ SPE‘;&L&S O (maintenance
requirement)

b‘«(}& L res, MacArthur, R. H., Theor.

Bey.Bio, 1 -1-11 1970




The MacArthur’s consumer-resource model

max consumption rate of species ¢
on the i-th resource (wmetabolic s&ro&egv)

pop density _ death rate
C)"f SPQ&&@.S 0] (maintenance
requirement)

biokic res.

MacArthur, R. H., Theor.
Pop. Bio., 1, 1-11, 1970

Logisﬁ growkth of the i-th resource



What's nice about MacArthur’s model?

when y; are all very large, the dynamics of resources is very fast and we can use the quasi-stationary

assumption, hence ¢; = 1 — » nya/u; .

The dynamics of the densities can be recast as

P
where
ka = z , i — ,B %
l
aG iapi Chesson P., Theor. Popul. Biol. 37, 26-38 (1990)
dyy = E
i M l

we recover the GLV-equations at leading order in the quasi-stationary regime,
and species’ interactions are a measure of the niche overlap.



What's nice about MacArthur’s model?

when p. are all very large, the dynamics of resources is very fast and we can use the quasi-stationary

assumption, hence ¢; = 1 — » nya/u; .

The dynamics of the densities can be recast as

where
syaa&es’ up&&t«fﬁ

7T of resource i
s?@.ﬂiﬁs’ Airect

Eﬁﬂ&@ir&ﬂ?&i(}@'\ Chesson P, Theor. Popul. Biol. 37, 26-38 (1990)

we recover the GLV-equations at leading order in the quasi-stationary regime,
and species’ interactions are a measure of the niche overlap.



. but “all that glitters is not gold”

MacArthur’s model at stationarity provides N conditions for R concentrations

Z CIGZC‘Z>X< = torior==12 7 N

This eq. cannot have a solution if N>R.

Competitive Exclusion Principle: The total number of coexisting species cannot exceed the total

 number of resources on which they feed (at stationarity).

This is not good news for large scale species coexistence!
Do we really have one species per niche?




The MacArthur’s consumer-resource model

with time-dependent metabolic strategies

= R =
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C; = ¢ :Mz(l = Cl) 5 Z nda"l(t) A.R. Batista-Tomas et al.,

= o=1 G Chaos 31, 103113 (2021)




The MacArthur’s consumer-resource model

with time-dependent metabolic strategies

L, R =
N, =N, Z adi(t)cl = :B(f
=1 :
3 N o
Ci = Ci 'M l(l 7 Cl) £ Z naao-l(t) A.R. Batista-Tomas et al.,
= c=1 z Chaos 31, 103113 (2021)
a Pl Now you take the limit
e SR A l
(1) = N = \/NZG(t) N - a]1\1]dR — 00 such
that v = — is constant and
i Ll I T/TO —|t—t|/r
(ZG(I)ZG,(I 1) = Oy 50; i apply DMFT...




The MacArthur’s consumer-resource model

with time-dependent metabolic strategies

¢; = ¢ [ﬂi(l =)= 2 naaai(t)]

2

(1) = n(1) b Lo i ié’n(t) =
1%

: v \/_ i

&) = c(®) | ull — ct)] — ap, — ZE() - zzj

where

v =lm—

ZJ't
0

dt’ q(|t=1']) G, 1)) + ()

;

0

N  (&0E()) = q(| 1 = '{cOc))pasns

R (L)) = q(|t = '] }{n(Dn(E)) pasns

,Dn(t) = <n(t)>paths
pc(t) = <C(t)>paths

dt’ q(| 1 = '])G, (8, 1)c(t) + h (1)




The MacArthur’s consumer-resource model

with time-dependent metabolic strategies

When we take the white noise limit (z — 0), we obtain

P(l’l) = ln —1+5ne —nlp,

T

where

ol 2ac) - 210 {c2)

"= T L



The MacArthur’s consumer-resource model

with time-dependent metabolic strategies

When we take the white noise limit (z — 0), we obtain

P(l’l) =7 ln —1+5ne —nlp,

where
20 — 2U0 2
N Chr T R
el (c)
so we can violate the CEP whenv > 1
o)
crs = o

04 a



The MacArthur’s consumer-resource model

with time-dependent metabolic strategies

When we take the white noise limit (z — 0), we obtain

P(l’l) =7 ln —1+5ne —nlp,

——

‘—‘

comparison simulations and theory:
N=200 K-—10

p(n)




A final summary

* Species abundances can be explained with heterogeneous yet structureless interactions;
* time-varying interactions help coexistence in GLV;
* time-varying interactions help violating the Competitive Exclusion Principle in CR.
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Alternative ways of explaining coexistence

Maximum height (m)
44

Classical explanations ,z >Y "H‘ e o
° .‘ ..”ﬁ"“} & ’ ; et o y - 42 | trees

of coexistence b o

(neo-Darwinism):

~ 40

— 38

« the ecological niche is the
range of environmental
conditions that allow a
population to persist in a
given location — i.e., the
growth rate is non-
negative (G. H.
Hutchinson, 1958-59)
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« the split of resources is an
outcome of the co-
evolution of species in
competition (J. Connell,
1975)

Shrubs

D’Andrea et al., Ecology, 2020



