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“It is interesting to contemplate an entangled bank, clothed with many plants 
of many kinds, with birds singing on the bushes, with various insects flitting 
about, and with worms crawling through the damp earth, and to reflect that 

these elaborately constructed forms, so different from each other, and 
dependent on each other in so complex a manner, 

have all been produced by laws acting around us.” 

— C. Darwin, On the Origin of Species, 1859 —

The coexistence problem is 
as old as

the entangled bank



Is species coexistence an emergent property of communities?

frequencies, which we determined as the av-
erage frequency of the ESV over the last four
transfers (Fig. 1C, fig. S3, and materials and
methods). By contrast, ESVs that were only tran-
siently present during community assembly but
were not part of the final stable community
generally exhibited either negative average
fitness values or equilibrium frequencies close
to 0 (figs. S4 and S5). Overall, our quantitative
analyses indicated that the ESVs that were pres-
ent in the final transfer of our multispecies

enrichment communities could invade from
low frequency, fulfilling themutual invisibility
criterion of stable coexistence (36).

Quantification of pairwise competition assays

To empirically test whether stable multispe-
cies coexistence was a pairwise phenomenon
in our enrichment communities, we chose 12
representative communities containingbetween
five and 13 ESVs in stable equilibrium, plated
them on their final transfer, and then selected

at least three morphologically distinct isolates
from each community (fig. S6 and materials
and methods). Using Sanger sequencing, we
obtained the full-length sequence of the 16S
rRNA gene of these isolates, aligned it with the
ESVs that were found in their communities of
origin, and retained all isolates with at least
200–base pair consensus sequence and four
or fewer mismatches. This resulted in a total
of 62 isolates, 40 with fully matching align-
ments and 22 with one to four mismatches
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Fig. 1. Enrichment microbial communities allowed us to test the complexity
of species coexistence. (A) The two hypotheses about species coexistence
tested in our study. (B) To discriminate between the two hypotheses, we used an
empirical system constructed from previously assembled enrichment in vitro
bacterial communities under serial growth and dilution cycles (9). In inset I,
we present the full assembly dynamics for a representative community,
showing the frequency of each ESV at the end of every growth period
(transfers). We only show ESVs >2% in frequency, each in a different color.
We chose 12 representative communities with richness ranging between
N = 5 and N = 13 ESVs at transfer 12 (inset II) and isolated most community
members (colored bars) covering an average of 89.4% of the abundance.
Gray bars represent ESVs that we were not able to isolate (see the materials
and methods). Raw data were obtained from previous studies (9, 34, 35).
(C) Frequency-dependent dynamics predicted the empirically observed
equilibrium frequencies. Empirical equilibrium frequencies (horizontal axis)

were quantified as the average frequency of an ESV in the last four transfers
of the community assembly process (transfers nine to 12). To determine the
predicted equilibrium frequency x* (x axis), we first quantified the invasion
fitness Fi = log (xi/xi–1) for each ESV at each transfer and then regressed this
Fi against ESV frequency. This regression yielded a negative slope for 95/99
ESVs found near the equilibrium in their respective community (fig. S3),
indicating that these ESVs are subject to negative frequency–dependent
selection. In these cases, we estimated the equilibrium frequency x* as
the x-intercept of the regression line (figs. S3 and S4). (D) Two examples of
invasion fitness analysis from the community in inset I showing negative
frequency–dependent selection. The yellow line represents the linear fit
as determined by least-squares regression (N = 11, R2 = 0.92 and N = 11, R2 =
0.70 for the top and bottom panels, respectively). The x-intercept was used
to estimate the equilibrium frequency x*, which is shown as a vertical
dashed line.
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Is species coexistence an emergent property of communities?

multi-species coexistence is an additive affair,  
and all of the coexisting members of a 
community must also coexist as pairs when 
isolated from the community context.

frequencies, which we determined as the av-
erage frequency of the ESV over the last four
transfers (Fig. 1C, fig. S3, and materials and
methods). By contrast, ESVs that were only tran-
siently present during community assembly but
were not part of the final stable community
generally exhibited either negative average
fitness values or equilibrium frequencies close
to 0 (figs. S4 and S5). Overall, our quantitative
analyses indicated that the ESVs that were pres-
ent in the final transfer of our multispecies

enrichment communities could invade from
low frequency, fulfilling themutual invisibility
criterion of stable coexistence (36).

Quantification of pairwise competition assays

To empirically test whether stable multispe-
cies coexistence was a pairwise phenomenon
in our enrichment communities, we chose 12
representative communities containingbetween
five and 13 ESVs in stable equilibrium, plated
them on their final transfer, and then selected

at least three morphologically distinct isolates
from each community (fig. S6 and materials
and methods). Using Sanger sequencing, we
obtained the full-length sequence of the 16S
rRNA gene of these isolates, aligned it with the
ESVs that were found in their communities of
origin, and retained all isolates with at least
200–base pair consensus sequence and four
or fewer mismatches. This resulted in a total
of 62 isolates, 40 with fully matching align-
ments and 22 with one to four mismatches
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Fig. 1. Enrichment microbial communities allowed us to test the complexity
of species coexistence. (A) The two hypotheses about species coexistence
tested in our study. (B) To discriminate between the two hypotheses, we used an
empirical system constructed from previously assembled enrichment in vitro
bacterial communities under serial growth and dilution cycles (9). In inset I,
we present the full assembly dynamics for a representative community,
showing the frequency of each ESV at the end of every growth period
(transfers). We only show ESVs >2% in frequency, each in a different color.
We chose 12 representative communities with richness ranging between
N = 5 and N = 13 ESVs at transfer 12 (inset II) and isolated most community
members (colored bars) covering an average of 89.4% of the abundance.
Gray bars represent ESVs that we were not able to isolate (see the materials
and methods). Raw data were obtained from previous studies (9, 34, 35).
(C) Frequency-dependent dynamics predicted the empirically observed
equilibrium frequencies. Empirical equilibrium frequencies (horizontal axis)

were quantified as the average frequency of an ESV in the last four transfers
of the community assembly process (transfers nine to 12). To determine the
predicted equilibrium frequency x* (x axis), we first quantified the invasion
fitness Fi = log (xi/xi–1) for each ESV at each transfer and then regressed this
Fi against ESV frequency. This regression yielded a negative slope for 95/99
ESVs found near the equilibrium in their respective community (fig. S3),
indicating that these ESVs are subject to negative frequency–dependent
selection. In these cases, we estimated the equilibrium frequency x* as
the x-intercept of the regression line (figs. S3 and S4). (D) Two examples of
invasion fitness analysis from the community in inset I showing negative
frequency–dependent selection. The yellow line represents the linear fit
as determined by least-squares regression (N = 11, R2 = 0.92 and N = 11, R2 =
0.70 for the top and bottom panels, respectively). The x-intercept was used
to estimate the equilibrium frequency x*, which is shown as a vertical
dashed line.
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Is species coexistence an emergent property of communities?

multi-species coexistence is an additive affair,  
and all of the coexisting members of a 
community must also coexist as pairs when 
isolated from the community context.

frequencies, which we determined as the av-
erage frequency of the ESV over the last four
transfers (Fig. 1C, fig. S3, and materials and
methods). By contrast, ESVs that were only tran-
siently present during community assembly but
were not part of the final stable community
generally exhibited either negative average
fitness values or equilibrium frequencies close
to 0 (figs. S4 and S5). Overall, our quantitative
analyses indicated that the ESVs that were pres-
ent in the final transfer of our multispecies

enrichment communities could invade from
low frequency, fulfilling themutual invisibility
criterion of stable coexistence (36).

Quantification of pairwise competition assays

To empirically test whether stable multispe-
cies coexistence was a pairwise phenomenon
in our enrichment communities, we chose 12
representative communities containingbetween
five and 13 ESVs in stable equilibrium, plated
them on their final transfer, and then selected

at least three morphologically distinct isolates
from each community (fig. S6 and materials
and methods). Using Sanger sequencing, we
obtained the full-length sequence of the 16S
rRNA gene of these isolates, aligned it with the
ESVs that were found in their communities of
origin, and retained all isolates with at least
200–base pair consensus sequence and four
or fewer mismatches. This resulted in a total
of 62 isolates, 40 with fully matching align-
ments and 22 with one to four mismatches
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Fig. 1. Enrichment microbial communities allowed us to test the complexity
of species coexistence. (A) The two hypotheses about species coexistence
tested in our study. (B) To discriminate between the two hypotheses, we used an
empirical system constructed from previously assembled enrichment in vitro
bacterial communities under serial growth and dilution cycles (9). In inset I,
we present the full assembly dynamics for a representative community,
showing the frequency of each ESV at the end of every growth period
(transfers). We only show ESVs >2% in frequency, each in a different color.
We chose 12 representative communities with richness ranging between
N = 5 and N = 13 ESVs at transfer 12 (inset II) and isolated most community
members (colored bars) covering an average of 89.4% of the abundance.
Gray bars represent ESVs that we were not able to isolate (see the materials
and methods). Raw data were obtained from previous studies (9, 34, 35).
(C) Frequency-dependent dynamics predicted the empirically observed
equilibrium frequencies. Empirical equilibrium frequencies (horizontal axis)

were quantified as the average frequency of an ESV in the last four transfers
of the community assembly process (transfers nine to 12). To determine the
predicted equilibrium frequency x* (x axis), we first quantified the invasion
fitness Fi = log (xi/xi–1) for each ESV at each transfer and then regressed this
Fi against ESV frequency. This regression yielded a negative slope for 95/99
ESVs found near the equilibrium in their respective community (fig. S3),
indicating that these ESVs are subject to negative frequency–dependent
selection. In these cases, we estimated the equilibrium frequency x* as
the x-intercept of the regression line (figs. S3 and S4). (D) Two examples of
invasion fitness analysis from the community in inset I showing negative
frequency–dependent selection. The yellow line represents the linear fit
as determined by least-squares regression (N = 11, R2 = 0.92 and N = 11, R2 =
0.70 for the top and bottom panels, respectively). The x-intercept was used
to estimate the equilibrium frequency x*, which is shown as a vertical
dashed line.
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coexistence in a multi-species community 
is a property of the community, which is not 
exhibited by its most elementary units of 
coexistence, pairs of species in isolationFriedman et al., Nat. Ecol. Evol., 2017; Letten et al., Ecol. Letters, 

2019; Meroz et al., Nat. Comm., 2020.
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Is species coexistence an emergent property of communities?

multi-species coexistence is an additive affair,  
and all of the coexisting members of a 
community must also coexist as pairs when 
isolated from the community context.

frequencies, which we determined as the av-
erage frequency of the ESV over the last four
transfers (Fig. 1C, fig. S3, and materials and
methods). By contrast, ESVs that were only tran-
siently present during community assembly but
were not part of the final stable community
generally exhibited either negative average
fitness values or equilibrium frequencies close
to 0 (figs. S4 and S5). Overall, our quantitative
analyses indicated that the ESVs that were pres-
ent in the final transfer of our multispecies

enrichment communities could invade from
low frequency, fulfilling themutual invisibility
criterion of stable coexistence (36).

Quantification of pairwise competition assays

To empirically test whether stable multispe-
cies coexistence was a pairwise phenomenon
in our enrichment communities, we chose 12
representative communities containingbetween
five and 13 ESVs in stable equilibrium, plated
them on their final transfer, and then selected

at least three morphologically distinct isolates
from each community (fig. S6 and materials
and methods). Using Sanger sequencing, we
obtained the full-length sequence of the 16S
rRNA gene of these isolates, aligned it with the
ESVs that were found in their communities of
origin, and retained all isolates with at least
200–base pair consensus sequence and four
or fewer mismatches. This resulted in a total
of 62 isolates, 40 with fully matching align-
ments and 22 with one to four mismatches
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Fig. 1. Enrichment microbial communities allowed us to test the complexity
of species coexistence. (A) The two hypotheses about species coexistence
tested in our study. (B) To discriminate between the two hypotheses, we used an
empirical system constructed from previously assembled enrichment in vitro
bacterial communities under serial growth and dilution cycles (9). In inset I,
we present the full assembly dynamics for a representative community,
showing the frequency of each ESV at the end of every growth period
(transfers). We only show ESVs >2% in frequency, each in a different color.
We chose 12 representative communities with richness ranging between
N = 5 and N = 13 ESVs at transfer 12 (inset II) and isolated most community
members (colored bars) covering an average of 89.4% of the abundance.
Gray bars represent ESVs that we were not able to isolate (see the materials
and methods). Raw data were obtained from previous studies (9, 34, 35).
(C) Frequency-dependent dynamics predicted the empirically observed
equilibrium frequencies. Empirical equilibrium frequencies (horizontal axis)

were quantified as the average frequency of an ESV in the last four transfers
of the community assembly process (transfers nine to 12). To determine the
predicted equilibrium frequency x* (x axis), we first quantified the invasion
fitness Fi = log (xi/xi–1) for each ESV at each transfer and then regressed this
Fi against ESV frequency. This regression yielded a negative slope for 95/99
ESVs found near the equilibrium in their respective community (fig. S3),
indicating that these ESVs are subject to negative frequency–dependent
selection. In these cases, we estimated the equilibrium frequency x* as
the x-intercept of the regression line (figs. S3 and S4). (D) Two examples of
invasion fitness analysis from the community in inset I showing negative
frequency–dependent selection. The yellow line represents the linear fit
as determined by least-squares regression (N = 11, R2 = 0.92 and N = 11, R2 =
0.70 for the top and bottom panels, respectively). The x-intercept was used
to estimate the equilibrium frequency x*, which is shown as a vertical
dashed line.
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coexistence in a multi-species community 
is a property of the community, which is not 
exhibited by its most elementary units of 
coexistence, pairs of species in isolation

“The best possible knowledge of a whole does not necessarily include 
the best possible knowledge of all its parts.”

— E. Schrödinger, Discussion of prob. relations…, 1935 —

Friedman et al., Nat. Ecol. Evol., 2017; Letten et al., Ecol. Letters, 
2019; Meroz et al., Nat. Comm., 2020.

Chang-Yu C. et al., Science 2023 



Community structure from simple assembly rules?

Friedman et al., Nat. Ecol. Evol., 2017.
Letten et al., Ecol. Letters, 2019.
Meroz et al., Nat. Comm., 2020.
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not have time to arise and spread. Community compositions were 
assessed by measuring the culture optical density, as well as by plat-
ing on solid agar media and counting colonies, which are distinct 
for each species25. These two measurements quantify the overall 
abundance of microorganisms in the community and the relative 
abundances of individual species, respectively. All experiments were 
carried out in duplicate.

Pairwise competitions resulted in stable coexistence or competi-
tive exclusion of one of the species. We performed competitions 

between all species pairs and found that in the majority of the pairs 
(19/28 =  68%, Fig. 2b) both species could invade each other, and thus 
stably coexisted. In the remaining pairs (9/28 =  32%) competitive  
exclusion occurred, where only one species could invade the other 
(time trajectories from one coexisting pair and one pair where 
exclusion occurs are shown in Fig. 2c. Outcomes for all pairs are 
shown in Fig. 2d). Species’ growth rate in monoculture was corre-
lated with their average competitive ability, but, in line with previ-
ous reports26, it could not predict well the outcome of specific pair 
competitions (Supplementary Fig. 3).

Next, we measured the outcome of competition between all 56 
three-species combinations. These competitions typically resulted 
in a stable community whose composition was independent of the 
starting fractions (Supplementary Table 1). However, 2 of the 56 
trios displayed inconsistent results with high variability between 
replicates. This variability probably resulted from rapid evolution-
ary changes that occurred during the competition (Supplementary 
Fig. 4). All but one of the other trio competitions resulted in stable 
communities with a single outcome, independent of starting con-
ditions. This raises the question of whether this unique outcome 
could be predicted based on the experimentally observed outcomes 
of the pairwise competitions.

Trios were grouped by the topology of their pairwise outcome 
network, which was used to predict their competitive outcomes. 
The most common topology involved two coexisting pairs, and a 
pair where competitive exclusion occurs (30/56 =  54%). To illustrate 
this scenario, consider a set of three species, labelled A, B and C,  
where species A and C coexist with B in pairwise competitions, 
whereas C is excluded when competing with A. In this case, our 
proposed assembly rule predicts that the trio competition will result 
in the survival of species A and B, and exclusion of C (Fig. 3a). This 
predicted outcome occurred for the majority of the experimentally 
observed trios (Fig. 3b), but some trio competitions resulted in less 
intuitive outcomes (Fig. 3c). For example, 1 of the 30 trios with this 
topology led to the extinction of A and the coexistence of B and C  
(Fig.  3c). The experimentally observed outcomes of competition 
in this trio topology highlight that our simple assembly rule typi-
cally works, and the failures provide a sense of alternative outcomes 
that are possible given the same underlying topology of pairwise 
outcomes. Unpredicted outcomes may occur due to several mecha-
nisms, which are considered in the Discussion.

Another frequent topology was coexistence between all three 
species pairs (15/56 =  27%), in which case none of the species is 
predicted to be excluded in the trio competition (Fig.  3d). Such 
trio competitions resulted in either the coexistence of all three spe-
cies, as predicted by our assembly rule (Fig. 3e), or the exclusion 
of one of the species (Fig. 3f). Overall, 5 different trio layouts, and 
11 competitive outcomes were observed (Fig.  3g–k). Notably, all 
observed trio outcomes across all topologies can be generated from 
simple pairwise interactions, including the outcomes that were not 
correctly predicted by our assembly rule24. An incorrect prediction 
of our simple assembly rule is therefore not necessarily caused by 
higher-order interactions.

Overall, survival in three-species competitions was well pre-
dicted by pairwise outcomes. The assembly rule predicted species 
survival across all the three-way competitions with an 89.5% accu-
racy (Fig. 4a), where accuracy is defined as the fraction of species 
whose survival was correctly predicted. To get a sense of how the 
observed accuracy compares to the accuracy attainable when pair-
wise outcomes are not known, as a null model, we considered the 
case where the only information available is the average probabil-
ity that a species will survive in a trio competition (note that this 
probability is not assumed to be available in our simple assembly 
rule). Using this information, trio outcomes could only be predicted 
with 72% accuracy (Fig. 4a and Methods). We further compared the 
observed accuracy to the accuracy expected when species interact 

A

a

b

B

B C

A C

B

Can we predict
the outcome ?CA

A and B coexist

Time

B and C coexist

A excludes C

Figure 1 | A bottom-up approach to predicting community composition 
from qualitative competitive outcomes. a,b, Qualitative information 
regarding the survival of species in competitions between small sets of 
species, such as pairwise competitions (a), is used to predict survival in 
more diverse multispecies competitions, such as trio competitions (b).  
The particular pairwise outcomes illustrated here reflect the true outcomes 
observed experimentally in one set of three species (see Fig. 3b).
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solely in a pairwise manner, according to the gLV equations with a 
random interaction matrix (Methods). We found that the observed 
accuracy is consistent with the accuracy obtained in simulations 
of competitions that parallel our experimental setup (P =  0.29, 
Fig.  4b). Survival of species in pairwise competition is therefore 
surprisingly effective in predicting survival when species undergo 
trio competition.

Nonetheless, there are exceptional cases where qualitative pair-
wise outcomes are not sufficient to predict competitive outcomes of 
trio competitions. Accounting for such unexpected trio outcomes 
may improve prediction accuracy for competitions involving a 
larger set of species. We encode unexpected trio outcomes by creat-
ing effective modified pairwise outcomes, which replace the origi-
nal outcomes in the presence of an additional species. For example, 
competitive exclusion will be modified to an effective coexistence 
when two species coexist in the presence of a third species despite 
one of them being excluded from the pair competition. The effec-
tive, modified outcomes can be used to make predictions using the 
assembly rule as before (Methods and Supplementary Fig. 1). By 
accounting for unexpected trio outcomes, the assembly rule extends 
our intuition, and predicts community structure in the presence of 
potentially complex interactions.

The ability of the assembly rule to predict the outcomes of more 
diverse competitions was assessed by measuring survival in com-
petitions between all seven-species combinations, as well as the 
full set of eight species (Fig. 5a). Using only the pairwise outcomes, 
survival in these competitions could only be predicted with an 
accuracy of 62.5%, which is barely higher than the 61% accuracy 

obtained when using only the average probability that a species will 
survive these competitions (Fig. 5b). A considerably improved pre-
diction accuracy of 86% was achieved by incorporating information 
regarding the trio outcomes (Fig. 5b). As in the trio competitions, 
the observed accuracies are consistent with those obtained in gLV 
simulations that parallel the experimental setup, both when pre-
dicting using pairwise outcomes alone (P =  0.53) or in combination 
with trio outcomes (P =  0.21, Fig. 5c).

Discussion
Our assembly rule makes predictions that match our intuition, but 
there are several conditions under which these predictions may be 
inaccurate. First, community structure can be influenced by initial 
species abundances27, as has recently been demonstrated in pair-
wise competitions between bacteria of the genus Streptomyces28. 
Our assembly rule may be able to correctly predict the existence of 
multiple stable states, as it identifies all putative sets of coexisting, 
non-invasible species in a given species combination. However, we 
did not have sufficient data to evaluate the rule’s accuracy in such 
cases, as multistability was observed in only one of all our competi-
tion experiments.

Complex ecological dynamics, such as oscillations and chaos, can 
also have a significant impact on species survival29,30, making it dif-
ficult to predict the community structure. These dynamics can occur 
even in simple communities containing only a few interacting species. 
For example, oscillatory dynamics occur in gLV models of competi-
tion between as few as three species24, and have been experimentally 
observed in a cross-protection mutualism between a pair of bacterial 

Figure 2 | Pairwise competitions resulted in stable coexistence or competitive exclusion. a, Phylogenetic tree of the set of eight species used in this study. 
The tree is based on the full 16S gene and the branch lengths indicate the number of substitutions per base pair. b, Coexistence was observed for 19 of 
the 28 pairs, whereas competitive exclusion was observed for 9 of the 28 pairs. c, Changes in relative abundance over time in one pair where competitive 
exclusion occurred and one coexisting pair. The y axis indicates the fraction of one of the competing species. In the exclusion example (right panel), the 
species fraction increased for all initial conditions, resulting in the exclusion of the competitor. In contrast, in the coexistence case (left panel), fractions 
converged to an intermediate value and both species were found at the end of the competition. Blue and red arrows to the right indicate the qualitative 
competitive outcome, with the star marking the final fraction in the case of coexistence. Error bars represent the standard deviation of the posterior beta 
distribution of the fractions, based on colony counts averaged across replicates. d, Network diagram of the outcomes of all pairwise competitions.
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frequencies, which we determined as the av-
erage frequency of the ESV over the last four
transfers (Fig. 1C, fig. S3, and materials and
methods). By contrast, ESVs that were only tran-
siently present during community assembly but
were not part of the final stable community
generally exhibited either negative average
fitness values or equilibrium frequencies close
to 0 (figs. S4 and S5). Overall, our quantitative
analyses indicated that the ESVs that were pres-
ent in the final transfer of our multispecies

enrichment communities could invade from
low frequency, fulfilling themutual invisibility
criterion of stable coexistence (36).

Quantification of pairwise competition assays

To empirically test whether stable multispe-
cies coexistence was a pairwise phenomenon
in our enrichment communities, we chose 12
representative communities containingbetween
five and 13 ESVs in stable equilibrium, plated
them on their final transfer, and then selected

at least three morphologically distinct isolates
from each community (fig. S6 and materials
and methods). Using Sanger sequencing, we
obtained the full-length sequence of the 16S
rRNA gene of these isolates, aligned it with the
ESVs that were found in their communities of
origin, and retained all isolates with at least
200–base pair consensus sequence and four
or fewer mismatches. This resulted in a total
of 62 isolates, 40 with fully matching align-
ments and 22 with one to four mismatches
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Fig. 1. Enrichment microbial communities allowed us to test the complexity
of species coexistence. (A) The two hypotheses about species coexistence
tested in our study. (B) To discriminate between the two hypotheses, we used an
empirical system constructed from previously assembled enrichment in vitro
bacterial communities under serial growth and dilution cycles (9). In inset I,
we present the full assembly dynamics for a representative community,
showing the frequency of each ESV at the end of every growth period
(transfers). We only show ESVs >2% in frequency, each in a different color.
We chose 12 representative communities with richness ranging between
N = 5 and N = 13 ESVs at transfer 12 (inset II) and isolated most community
members (colored bars) covering an average of 89.4% of the abundance.
Gray bars represent ESVs that we were not able to isolate (see the materials
and methods). Raw data were obtained from previous studies (9, 34, 35).
(C) Frequency-dependent dynamics predicted the empirically observed
equilibrium frequencies. Empirical equilibrium frequencies (horizontal axis)

were quantified as the average frequency of an ESV in the last four transfers
of the community assembly process (transfers nine to 12). To determine the
predicted equilibrium frequency x* (x axis), we first quantified the invasion
fitness Fi = log (xi/xi–1) for each ESV at each transfer and then regressed this
Fi against ESV frequency. This regression yielded a negative slope for 95/99
ESVs found near the equilibrium in their respective community (fig. S3),
indicating that these ESVs are subject to negative frequency–dependent
selection. In these cases, we estimated the equilibrium frequency x* as
the x-intercept of the regression line (figs. S3 and S4). (D) Two examples of
invasion fitness analysis from the community in inset I showing negative
frequency–dependent selection. The yellow line represents the linear fit
as determined by least-squares regression (N = 11, R2 = 0.92 and N = 11, R2 =
0.70 for the top and bottom panels, respectively). The x-intercept was used
to estimate the equilibrium frequency x*, which is shown as a vertical
dashed line.
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(fig. S7 and materials and methods), covering
on average 89.4% of the ESV composition of
the original communities (Fig. 1B).
We then performed every possible pairwise

competition experiment among the isolates of
each community by mixing inocula of pairs of
isolates and passaging each mixture for eight
growth-dilution cycles in the same glucose
minimal medium at the same temperature
(30°C) used in the original community enrich-
ment experiments (Fig. 2A). All pairwise com-
petition experiments were performed three
times, each at a different starting count pro-
portion of ~5:95, ~50:50, and ~95:5 (Fig. 2A

and materials and methods). During each
growth cycle, the cells were incubated for
48 hours, after which the resulting culture
was diluted 125-fold into fresh medium, as
was done in the original community assembly
experiment (9). At the end of the last dilution
cycle, we measured the composition of our
pairwise co-cultures by plating them on Petri
dishes and counting the colonies belonging to
each isolate.
To avoid human bias in colony morphology

identification, we adopted an automated image-
processing pipeline (fig. S8) combined with a
machine-learning approach for classification

using 159 × 3 = 477 co-culture images on the
basis of 40 colony morphology features (figs.
S9 and S10, table S1, and supplementary mate-
rials). The pipeline started by extracting color
channels and correcting for uneven backgrounds,
followed by segmenting colony objects and ex-
tracting the morphological features from these.
These colony features were analyzed using ran-
dom forest classification to determine whether
each colony present in the co-culture image
belonged to one morphotype or another (fig.
S10). This approach allowed us to quantify the
number of colony-forming units of each of
the two competitors in pairwise co-culture. Of
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Fig. 2. Multispecies coexistence is an emergent property of the community.
(A) To determine whether isolated species pairs coexist or outcompete one
another, we cultured each pair at three different initial frequencies. Pairs were
propagated in the same culture conditions as their community of origin for
eight consecutive passages. The pairwise competition outcomes of all 12
enrichment communities are shown in (B), and communities are ordered
by the number of strains in each community from the smallest (three taxa) to
the largest (10 taxa). The numbers above in each bar show the number of ESVs,
the number of isolated strains, and the number of tested pairs, respectively.
Note that some communities have missing pairs because these pairs either
did not have any colonies in co-culture or had low classification model accuracy.
(C) Competition outcomes of 144 pairwise co-cultures. Mean frequencies and

95% confidence intervals were determined by Poisson sampling (N = 1000;
see the materials and methods). For clarity, we plotted in all cases the frequency
of the isolate ending with a lower average frequency in time point 8 (T8). In
coexisting pairs, the mean equilibrium frequency on the final transfer is
represented by a horizontal dashed line, and the 95% confidence interval
(computed from Poisson sampling, N = 1000) as a shaded area around it. Each
of the inset grids indicates the change in frequency from the initial time point
(T0) to the final one (T8). The background color represents the competition
outcomes, and the line color indicates the three initial frequencies. To establish
significant changes in frequency between T0 and T8 in each experiment, we
used Wilcoxon–Mann-Whitney tests with N = 2000 and a significance threshold
of P < 0.05 (see the materials and methods).
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In 26.4% of the pairs, one of the two species 
had become competitively excluded; 
 
In other 45.1% of the pairs, the frequency of  
one of the species declined, regardless of its 
initial proportion;

71.6% of the pairs failed to coexist in the  
absence of the other community members.
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frequencies, which we determined as the av-
erage frequency of the ESV over the last four
transfers (Fig. 1C, fig. S3, and materials and
methods). By contrast, ESVs that were only tran-
siently present during community assembly but
were not part of the final stable community
generally exhibited either negative average
fitness values or equilibrium frequencies close
to 0 (figs. S4 and S5). Overall, our quantitative
analyses indicated that the ESVs that were pres-
ent in the final transfer of our multispecies

enrichment communities could invade from
low frequency, fulfilling themutual invisibility
criterion of stable coexistence (36).

Quantification of pairwise competition assays

To empirically test whether stable multispe-
cies coexistence was a pairwise phenomenon
in our enrichment communities, we chose 12
representative communities containingbetween
five and 13 ESVs in stable equilibrium, plated
them on their final transfer, and then selected

at least three morphologically distinct isolates
from each community (fig. S6 and materials
and methods). Using Sanger sequencing, we
obtained the full-length sequence of the 16S
rRNA gene of these isolates, aligned it with the
ESVs that were found in their communities of
origin, and retained all isolates with at least
200–base pair consensus sequence and four
or fewer mismatches. This resulted in a total
of 62 isolates, 40 with fully matching align-
ments and 22 with one to four mismatches
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Fig. 1. Enrichment microbial communities allowed us to test the complexity
of species coexistence. (A) The two hypotheses about species coexistence
tested in our study. (B) To discriminate between the two hypotheses, we used an
empirical system constructed from previously assembled enrichment in vitro
bacterial communities under serial growth and dilution cycles (9). In inset I,
we present the full assembly dynamics for a representative community,
showing the frequency of each ESV at the end of every growth period
(transfers). We only show ESVs >2% in frequency, each in a different color.
We chose 12 representative communities with richness ranging between
N = 5 and N = 13 ESVs at transfer 12 (inset II) and isolated most community
members (colored bars) covering an average of 89.4% of the abundance.
Gray bars represent ESVs that we were not able to isolate (see the materials
and methods). Raw data were obtained from previous studies (9, 34, 35).
(C) Frequency-dependent dynamics predicted the empirically observed
equilibrium frequencies. Empirical equilibrium frequencies (horizontal axis)

were quantified as the average frequency of an ESV in the last four transfers
of the community assembly process (transfers nine to 12). To determine the
predicted equilibrium frequency x* (x axis), we first quantified the invasion
fitness Fi = log (xi/xi–1) for each ESV at each transfer and then regressed this
Fi against ESV frequency. This regression yielded a negative slope for 95/99
ESVs found near the equilibrium in their respective community (fig. S3),
indicating that these ESVs are subject to negative frequency–dependent
selection. In these cases, we estimated the equilibrium frequency x* as
the x-intercept of the regression line (figs. S3 and S4). (D) Two examples of
invasion fitness analysis from the community in inset I showing negative
frequency–dependent selection. The yellow line represents the linear fit
as determined by least-squares regression (N = 11, R2 = 0.92 and N = 11, R2 =
0.70 for the top and bottom panels, respectively). The x-intercept was used
to estimate the equilibrium frequency x*, which is shown as a vertical
dashed line.
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71.6% of the pairs failed to coexist in the  
absence of the other community members.

Given that both hypotheses can be correct
in different communities, under which 
conditions each is most likely to occur?

higher-order interactions?  
specific network of pairwise interactions? 
evolution of new species interactions?
…
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Dynamical Mean Field Theory of GLV

·xi(t) = xi(t) 1 − xi +
N

∑
j≠i

αijxj(t)

αij =
μ
N

+
σ

N
zij ⟨zij⟩ = 0 ⟨zijzlm⟩ = δilδjm



·x(t) = x(t)[1 − x(t) + μM(t) + η(t)]

·xi(t) = xi(t) 1 − xi +
N

∑
j≠i

αijxj(t)

αij =
μ
N

+
σ

N
zij

·x(t) = x(t)[1 − x(t) + μM(t) + γσ2 ∫
t

0
dt′ G(t, t′ )x(t′ ) + η(t)] interactions with correlations —> x is non-Markovian

N → ∞

Equation for a representative species (neutral limit with random self-consistent environment):

⟨zij⟩ = 0 ⟨zijzlm⟩ = δilδjm

Dynamical Mean Field Theory of GLV

M(t) = ⟨x(t)⟩
⟨η(t)η(t′ )⟩ = σ2⟨x(t)x(t′ )⟩

T. Galla, arxiv.org/abs/2405.14289
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·x(t) = x(t)[1 − x(t) + μM(t) + η(t)]
·xi(t) = xi(t) ri +
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∑
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Fig. 3: (Colour online) Probability for the system to end up in
a stable feasible stationary state vs. the variance σ2 of inter-
action matrix entries. Symbols are from simulations of com-
munities with N = 200 species, vertical dashed lines mark the
threshold variance σ2

c as obtained from the theory. The sys-
tem is predicted to be unstable above σ2

c . Predictions of the
theory are hence confirmed by the simulations, in which sta-
ble communities of surviving species are found for σ2 < σ2

c ,
and where unstable behavior is observed above the threshold
variance of interactions. We set µ = −1, the percentage of
predator-prey pairs is 33.3%, 50% and 66.6% for the left, cen-
tral and right curves, respectively, corresponding to predicted
values σ2

c = 0.88, σ2
c = 2 and σ2

c = 8 of the threshold variance
of interaction strengths.

where tf denotes the time up to which the integration was
performed. The threshold is chosen as ϑ = 0.01.

Using results from random-matrix theory [45,46] and
neglecting correlations between x∗

i and the {αij} the rel-
evant eigenvalue of S can be identified analytically as
λmax = −1 +

√
φσ(1 + γ). The stability condition hence

reads
√

φσ < 1/(1 + γ). Since the generating functional
analysis reveals that φ = 1/2 at the onset of instability,
one recovers the above condition (13). Note that random-
matrix theory alone is not sufficient to determine σ2

c as
given in eq. (13), as knowledge of the precise functional
dependence of φ on the model parameters σ, µ, γ is re-
quired. To our knowledge the path-integral method as
sketched above is the only available analytical tool which
allows one to calculate φ(σ, µ, γ).

Species and rank abundance. – The statistical me-
chanics theory is also able to predict species abundance
and rank abundance distributions. This was first carried
out for the case of replicator models with symmetric ran-
dom interaction matrices based on equilibrium techniques
in [32,33], and subsequently extended to general asymme-
try in [35]. The path-integral technique can be used to cal-
culate species and rank abundance for the Lotka-Volterra
model. As opposed to the case of replicator models the
overall biomass (closely related to the average concentra-
tion of individuals per species) is not held constant, but a
dynamical property of the model.

The fraction of survivors as well as the distribution of
concentrations of the surviving species can be computed
from our analysis in the limit of large system size, with-
out making any approximations at any stage and compare
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Fig. 4: (Colour online) Species abundance and rank abundance
distributions. The solid line is from the theory, the shaded area
in the main panel from simulations. A percentage of species
(31.9% for the model parameters chosen in this figure) dies out
asymptotically. In simulations these are found at small asymp-
totic densities (leftmost bin). Parameters are µ = −1, σ = 1,
αij and αji drawn independently for each pair i "= j (50% of all
species pairs are of the predator-prey type). The inset shows
the corresponding rank abundance distribution (solid line from
theory, markers from simulations). Species are ordered accord-
ing to descending concentration, x1 ≥ x2 ≥ . . . ≥ xN , the
plot shows abundance of the n-th species as a function of the
relative rank n/N . Numerical simulations are performed at
N = 200, averaged over 400 samples.

excellently with results from numerical simulations of sys-
tems with N = 200 species (fig. 4). Our results thus
improve on the analysis in [47], who computed abundance
relations via so-called “target concentrations”. The latter
may a priori come out negative, and to circumvent this
technical problem Wilson et al. applied a heuristic cut-off,
for which there is no need in our exact approach. Still
results reported in fig. 4 are qualitatively similar to those
shown in [47] (see, e.g., their figure 1). For the model with
uniform carrying capacities across all species (Ki = 1 for
all i = 1, . . . , N), the abundance distribution is of a Gaus-
sian shape restricted to the positive axis. However, the
generalization to species-dependent carrying capacities Ki

is straightforward and inherently non-Gaussian species-
abundance relations are then to be expected.

Discussion. – We have shown how tools for the dy-
namics of disordered systems reveal the combined effects
of asymmetric interactions, predator-prey pairs and in-
teraction strength variability on the behavior of random
community Lotka-Volterra models. Our work confirms the
results obtained from the direct application of the cav-
ity method to fixed point relations of the system [23].
The analysis of the effective dynamics analysis provides
evidence that predator-prey interactions have a stabiliz-
ing effect on random community Lotka-Volterra dynamics,
whereas increased variability of the inter-species interac-
tion coefficients generally reduces stability. At the same
time, increasing the complexity of couplings leads to
smaller asymptotic food webs (due to extinction of species
in the transient dynamics). Communities with a large
number of surviving species are hence more likely to be
stable than smaller ones.

48004-p6
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a stable feasible stationary state vs. the variance σ2 of inter-
action matrix entries. Symbols are from simulations of com-
munities with N = 200 species, vertical dashed lines mark the
threshold variance σ2

c as obtained from the theory. The sys-
tem is predicted to be unstable above σ2

c . Predictions of the
theory are hence confirmed by the simulations, in which sta-
ble communities of surviving species are found for σ2 < σ2

c ,
and where unstable behavior is observed above the threshold
variance of interactions. We set µ = −1, the percentage of
predator-prey pairs is 33.3%, 50% and 66.6% for the left, cen-
tral and right curves, respectively, corresponding to predicted
values σ2

c = 0.88, σ2
c = 2 and σ2

c = 8 of the threshold variance
of interaction strengths.

where tf denotes the time up to which the integration was
performed. The threshold is chosen as ϑ = 0.01.

Using results from random-matrix theory [45,46] and
neglecting correlations between x∗

i and the {αij} the rel-
evant eigenvalue of S can be identified analytically as
λmax = −1 +

√
φσ(1 + γ). The stability condition hence

reads
√

φσ < 1/(1 + γ). Since the generating functional
analysis reveals that φ = 1/2 at the onset of instability,
one recovers the above condition (13). Note that random-
matrix theory alone is not sufficient to determine σ2

c as
given in eq. (13), as knowledge of the precise functional
dependence of φ on the model parameters σ, µ, γ is re-
quired. To our knowledge the path-integral method as
sketched above is the only available analytical tool which
allows one to calculate φ(σ, µ, γ).

Species and rank abundance. – The statistical me-
chanics theory is also able to predict species abundance
and rank abundance distributions. This was first carried
out for the case of replicator models with symmetric ran-
dom interaction matrices based on equilibrium techniques
in [32,33], and subsequently extended to general asymme-
try in [35]. The path-integral technique can be used to cal-
culate species and rank abundance for the Lotka-Volterra
model. As opposed to the case of replicator models the
overall biomass (closely related to the average concentra-
tion of individuals per species) is not held constant, but a
dynamical property of the model.

The fraction of survivors as well as the distribution of
concentrations of the surviving species can be computed
from our analysis in the limit of large system size, with-
out making any approximations at any stage and compare
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Fig. 4: (Colour online) Species abundance and rank abundance
distributions. The solid line is from the theory, the shaded area
in the main panel from simulations. A percentage of species
(31.9% for the model parameters chosen in this figure) dies out
asymptotically. In simulations these are found at small asymp-
totic densities (leftmost bin). Parameters are µ = −1, σ = 1,
αij and αji drawn independently for each pair i "= j (50% of all
species pairs are of the predator-prey type). The inset shows
the corresponding rank abundance distribution (solid line from
theory, markers from simulations). Species are ordered accord-
ing to descending concentration, x1 ≥ x2 ≥ . . . ≥ xN , the
plot shows abundance of the n-th species as a function of the
relative rank n/N . Numerical simulations are performed at
N = 200, averaged over 400 samples.

excellently with results from numerical simulations of sys-
tems with N = 200 species (fig. 4). Our results thus
improve on the analysis in [47], who computed abundance
relations via so-called “target concentrations”. The latter
may a priori come out negative, and to circumvent this
technical problem Wilson et al. applied a heuristic cut-off,
for which there is no need in our exact approach. Still
results reported in fig. 4 are qualitatively similar to those
shown in [47] (see, e.g., their figure 1). For the model with
uniform carrying capacities across all species (Ki = 1 for
all i = 1, . . . , N), the abundance distribution is of a Gaus-
sian shape restricted to the positive axis. However, the
generalization to species-dependent carrying capacities Ki

is straightforward and inherently non-Gaussian species-
abundance relations are then to be expected.

Discussion. – We have shown how tools for the dy-
namics of disordered systems reveal the combined effects
of asymmetric interactions, predator-prey pairs and in-
teraction strength variability on the behavior of random
community Lotka-Volterra models. Our work confirms the
results obtained from the direct application of the cav-
ity method to fixed point relations of the system [23].
The analysis of the effective dynamics analysis provides
evidence that predator-prey interactions have a stabiliz-
ing effect on random community Lotka-Volterra dynamics,
whereas increased variability of the inter-species interac-
tion coefficients generally reduces stability. At the same
time, increasing the complexity of couplings leads to
smaller asymptotic food webs (due to extinction of species
in the transient dynamics). Communities with a large
number of surviving species are hence more likely to be
stable than smaller ones.
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Fig. 3: (Colour online) Probability for the system to end up in
a stable feasible stationary state vs. the variance σ2 of inter-
action matrix entries. Symbols are from simulations of com-
munities with N = 200 species, vertical dashed lines mark the
threshold variance σ2

c as obtained from the theory. The sys-
tem is predicted to be unstable above σ2

c . Predictions of the
theory are hence confirmed by the simulations, in which sta-
ble communities of surviving species are found for σ2 < σ2

c ,
and where unstable behavior is observed above the threshold
variance of interactions. We set µ = −1, the percentage of
predator-prey pairs is 33.3%, 50% and 66.6% for the left, cen-
tral and right curves, respectively, corresponding to predicted
values σ2

c = 0.88, σ2
c = 2 and σ2

c = 8 of the threshold variance
of interaction strengths.

where tf denotes the time up to which the integration was
performed. The threshold is chosen as ϑ = 0.01.

Using results from random-matrix theory [45,46] and
neglecting correlations between x∗

i and the {αij} the rel-
evant eigenvalue of S can be identified analytically as
λmax = −1 +

√
φσ(1 + γ). The stability condition hence

reads
√

φσ < 1/(1 + γ). Since the generating functional
analysis reveals that φ = 1/2 at the onset of instability,
one recovers the above condition (13). Note that random-
matrix theory alone is not sufficient to determine σ2

c as
given in eq. (13), as knowledge of the precise functional
dependence of φ on the model parameters σ, µ, γ is re-
quired. To our knowledge the path-integral method as
sketched above is the only available analytical tool which
allows one to calculate φ(σ, µ, γ).

Species and rank abundance. – The statistical me-
chanics theory is also able to predict species abundance
and rank abundance distributions. This was first carried
out for the case of replicator models with symmetric ran-
dom interaction matrices based on equilibrium techniques
in [32,33], and subsequently extended to general asymme-
try in [35]. The path-integral technique can be used to cal-
culate species and rank abundance for the Lotka-Volterra
model. As opposed to the case of replicator models the
overall biomass (closely related to the average concentra-
tion of individuals per species) is not held constant, but a
dynamical property of the model.

The fraction of survivors as well as the distribution of
concentrations of the surviving species can be computed
from our analysis in the limit of large system size, with-
out making any approximations at any stage and compare
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Fig. 4: (Colour online) Species abundance and rank abundance
distributions. The solid line is from the theory, the shaded area
in the main panel from simulations. A percentage of species
(31.9% for the model parameters chosen in this figure) dies out
asymptotically. In simulations these are found at small asymp-
totic densities (leftmost bin). Parameters are µ = −1, σ = 1,
αij and αji drawn independently for each pair i "= j (50% of all
species pairs are of the predator-prey type). The inset shows
the corresponding rank abundance distribution (solid line from
theory, markers from simulations). Species are ordered accord-
ing to descending concentration, x1 ≥ x2 ≥ . . . ≥ xN , the
plot shows abundance of the n-th species as a function of the
relative rank n/N . Numerical simulations are performed at
N = 200, averaged over 400 samples.

excellently with results from numerical simulations of sys-
tems with N = 200 species (fig. 4). Our results thus
improve on the analysis in [47], who computed abundance
relations via so-called “target concentrations”. The latter
may a priori come out negative, and to circumvent this
technical problem Wilson et al. applied a heuristic cut-off,
for which there is no need in our exact approach. Still
results reported in fig. 4 are qualitatively similar to those
shown in [47] (see, e.g., their figure 1). For the model with
uniform carrying capacities across all species (Ki = 1 for
all i = 1, . . . , N), the abundance distribution is of a Gaus-
sian shape restricted to the positive axis. However, the
generalization to species-dependent carrying capacities Ki

is straightforward and inherently non-Gaussian species-
abundance relations are then to be expected.

Discussion. – We have shown how tools for the dy-
namics of disordered systems reveal the combined effects
of asymmetric interactions, predator-prey pairs and in-
teraction strength variability on the behavior of random
community Lotka-Volterra models. Our work confirms the
results obtained from the direct application of the cav-
ity method to fixed point relations of the system [23].
The analysis of the effective dynamics analysis provides
evidence that predator-prey interactions have a stabiliz-
ing effect on random community Lotka-Volterra dynamics,
whereas increased variability of the inter-species interac-
tion coefficients generally reduces stability. At the same
time, increasing the complexity of couplings leads to
smaller asymptotic food webs (due to extinction of species
in the transient dynamics). Communities with a large
number of surviving species are hence more likely to be
stable than smaller ones.
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a stable feasible stationary state vs. the variance σ2 of inter-
action matrix entries. Symbols are from simulations of com-
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c as obtained from the theory. The sys-
tem is predicted to be unstable above σ2

c . Predictions of the
theory are hence confirmed by the simulations, in which sta-
ble communities of surviving species are found for σ2 < σ2

c ,
and where unstable behavior is observed above the threshold
variance of interactions. We set µ = −1, the percentage of
predator-prey pairs is 33.3%, 50% and 66.6% for the left, cen-
tral and right curves, respectively, corresponding to predicted
values σ2

c = 0.88, σ2
c = 2 and σ2

c = 8 of the threshold variance
of interaction strengths.

where tf denotes the time up to which the integration was
performed. The threshold is chosen as ϑ = 0.01.

Using results from random-matrix theory [45,46] and
neglecting correlations between x∗

i and the {αij} the rel-
evant eigenvalue of S can be identified analytically as
λmax = −1 +

√
φσ(1 + γ). The stability condition hence

reads
√

φσ < 1/(1 + γ). Since the generating functional
analysis reveals that φ = 1/2 at the onset of instability,
one recovers the above condition (13). Note that random-
matrix theory alone is not sufficient to determine σ2

c as
given in eq. (13), as knowledge of the precise functional
dependence of φ on the model parameters σ, µ, γ is re-
quired. To our knowledge the path-integral method as
sketched above is the only available analytical tool which
allows one to calculate φ(σ, µ, γ).

Species and rank abundance. – The statistical me-
chanics theory is also able to predict species abundance
and rank abundance distributions. This was first carried
out for the case of replicator models with symmetric ran-
dom interaction matrices based on equilibrium techniques
in [32,33], and subsequently extended to general asymme-
try in [35]. The path-integral technique can be used to cal-
culate species and rank abundance for the Lotka-Volterra
model. As opposed to the case of replicator models the
overall biomass (closely related to the average concentra-
tion of individuals per species) is not held constant, but a
dynamical property of the model.

The fraction of survivors as well as the distribution of
concentrations of the surviving species can be computed
from our analysis in the limit of large system size, with-
out making any approximations at any stage and compare
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(31.9% for the model parameters chosen in this figure) dies out
asymptotically. In simulations these are found at small asymp-
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αij and αji drawn independently for each pair i "= j (50% of all
species pairs are of the predator-prey type). The inset shows
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ing to descending concentration, x1 ≥ x2 ≥ . . . ≥ xN , the
plot shows abundance of the n-th species as a function of the
relative rank n/N . Numerical simulations are performed at
N = 200, averaged over 400 samples.

excellently with results from numerical simulations of sys-
tems with N = 200 species (fig. 4). Our results thus
improve on the analysis in [47], who computed abundance
relations via so-called “target concentrations”. The latter
may a priori come out negative, and to circumvent this
technical problem Wilson et al. applied a heuristic cut-off,
for which there is no need in our exact approach. Still
results reported in fig. 4 are qualitatively similar to those
shown in [47] (see, e.g., their figure 1). For the model with
uniform carrying capacities across all species (Ki = 1 for
all i = 1, . . . , N), the abundance distribution is of a Gaus-
sian shape restricted to the positive axis. However, the
generalization to species-dependent carrying capacities Ki

is straightforward and inherently non-Gaussian species-
abundance relations are then to be expected.

Discussion. – We have shown how tools for the dy-
namics of disordered systems reveal the combined effects
of asymmetric interactions, predator-prey pairs and in-
teraction strength variability on the behavior of random
community Lotka-Volterra models. Our work confirms the
results obtained from the direct application of the cav-
ity method to fixed point relations of the system [23].
The analysis of the effective dynamics analysis provides
evidence that predator-prey interactions have a stabiliz-
ing effect on random community Lotka-Volterra dynamics,
whereas increased variability of the inter-species interac-
tion coefficients generally reduces stability. At the same
time, increasing the complexity of couplings leads to
smaller asymptotic food webs (due to extinction of species
in the transient dynamics). Communities with a large
number of surviving species are hence more likely to be
stable than smaller ones.
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action matrix entries. Symbols are from simulations of com-
munities with N = 200 species, vertical dashed lines mark the
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c as obtained from the theory. The sys-
tem is predicted to be unstable above σ2

c . Predictions of the
theory are hence confirmed by the simulations, in which sta-
ble communities of surviving species are found for σ2 < σ2

c ,
and where unstable behavior is observed above the threshold
variance of interactions. We set µ = −1, the percentage of
predator-prey pairs is 33.3%, 50% and 66.6% for the left, cen-
tral and right curves, respectively, corresponding to predicted
values σ2

c = 0.88, σ2
c = 2 and σ2

c = 8 of the threshold variance
of interaction strengths.

where tf denotes the time up to which the integration was
performed. The threshold is chosen as ϑ = 0.01.

Using results from random-matrix theory [45,46] and
neglecting correlations between x∗

i and the {αij} the rel-
evant eigenvalue of S can be identified analytically as
λmax = −1 +

√
φσ(1 + γ). The stability condition hence

reads
√

φσ < 1/(1 + γ). Since the generating functional
analysis reveals that φ = 1/2 at the onset of instability,
one recovers the above condition (13). Note that random-
matrix theory alone is not sufficient to determine σ2

c as
given in eq. (13), as knowledge of the precise functional
dependence of φ on the model parameters σ, µ, γ is re-
quired. To our knowledge the path-integral method as
sketched above is the only available analytical tool which
allows one to calculate φ(σ, µ, γ).

Species and rank abundance. – The statistical me-
chanics theory is also able to predict species abundance
and rank abundance distributions. This was first carried
out for the case of replicator models with symmetric ran-
dom interaction matrices based on equilibrium techniques
in [32,33], and subsequently extended to general asymme-
try in [35]. The path-integral technique can be used to cal-
culate species and rank abundance for the Lotka-Volterra
model. As opposed to the case of replicator models the
overall biomass (closely related to the average concentra-
tion of individuals per species) is not held constant, but a
dynamical property of the model.

The fraction of survivors as well as the distribution of
concentrations of the surviving species can be computed
from our analysis in the limit of large system size, with-
out making any approximations at any stage and compare
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Fig. 4: (Colour online) Species abundance and rank abundance
distributions. The solid line is from the theory, the shaded area
in the main panel from simulations. A percentage of species
(31.9% for the model parameters chosen in this figure) dies out
asymptotically. In simulations these are found at small asymp-
totic densities (leftmost bin). Parameters are µ = −1, σ = 1,
αij and αji drawn independently for each pair i "= j (50% of all
species pairs are of the predator-prey type). The inset shows
the corresponding rank abundance distribution (solid line from
theory, markers from simulations). Species are ordered accord-
ing to descending concentration, x1 ≥ x2 ≥ . . . ≥ xN , the
plot shows abundance of the n-th species as a function of the
relative rank n/N . Numerical simulations are performed at
N = 200, averaged over 400 samples.

excellently with results from numerical simulations of sys-
tems with N = 200 species (fig. 4). Our results thus
improve on the analysis in [47], who computed abundance
relations via so-called “target concentrations”. The latter
may a priori come out negative, and to circumvent this
technical problem Wilson et al. applied a heuristic cut-off,
for which there is no need in our exact approach. Still
results reported in fig. 4 are qualitatively similar to those
shown in [47] (see, e.g., their figure 1). For the model with
uniform carrying capacities across all species (Ki = 1 for
all i = 1, . . . , N), the abundance distribution is of a Gaus-
sian shape restricted to the positive axis. However, the
generalization to species-dependent carrying capacities Ki

is straightforward and inherently non-Gaussian species-
abundance relations are then to be expected.

Discussion. – We have shown how tools for the dy-
namics of disordered systems reveal the combined effects
of asymmetric interactions, predator-prey pairs and in-
teraction strength variability on the behavior of random
community Lotka-Volterra models. Our work confirms the
results obtained from the direct application of the cav-
ity method to fixed point relations of the system [23].
The analysis of the effective dynamics analysis provides
evidence that predator-prey interactions have a stabiliz-
ing effect on random community Lotka-Volterra dynamics,
whereas increased variability of the inter-species interac-
tion coefficients generally reduces stability. At the same
time, increasing the complexity of couplings leads to
smaller asymptotic food webs (due to extinction of species
in the transient dynamics). Communities with a large
number of surviving species are hence more likely to be
stable than smaller ones.
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where tf denotes the time up to which the integration was
performed. The threshold is chosen as ϑ = 0.01.

Using results from random-matrix theory [45,46] and
neglecting correlations between x∗

i and the {αij} the rel-
evant eigenvalue of S can be identified analytically as
λmax = −1 +

√
φσ(1 + γ). The stability condition hence

reads
√

φσ < 1/(1 + γ). Since the generating functional
analysis reveals that φ = 1/2 at the onset of instability,
one recovers the above condition (13). Note that random-
matrix theory alone is not sufficient to determine σ2

c as
given in eq. (13), as knowledge of the precise functional
dependence of φ on the model parameters σ, µ, γ is re-
quired. To our knowledge the path-integral method as
sketched above is the only available analytical tool which
allows one to calculate φ(σ, µ, γ).

Species and rank abundance. – The statistical me-
chanics theory is also able to predict species abundance
and rank abundance distributions. This was first carried
out for the case of replicator models with symmetric ran-
dom interaction matrices based on equilibrium techniques
in [32,33], and subsequently extended to general asymme-
try in [35]. The path-integral technique can be used to cal-
culate species and rank abundance for the Lotka-Volterra
model. As opposed to the case of replicator models the
overall biomass (closely related to the average concentra-
tion of individuals per species) is not held constant, but a
dynamical property of the model.

The fraction of survivors as well as the distribution of
concentrations of the surviving species can be computed
from our analysis in the limit of large system size, with-
out making any approximations at any stage and compare

0 0.5 1 1.5 2 2.5

abundance
0

0.5

1

1.5

2

fr
eq

ue
nc

y

0 0.2 0.4 0.6
relative rank n/N

0.01

0.1

1

10

ab
un

da
nc

e

surviving species

extinct 
species

Fig. 4: (Colour online) Species abundance and rank abundance
distributions. The solid line is from the theory, the shaded area
in the main panel from simulations. A percentage of species
(31.9% for the model parameters chosen in this figure) dies out
asymptotically. In simulations these are found at small asymp-
totic densities (leftmost bin). Parameters are µ = −1, σ = 1,
αij and αji drawn independently for each pair i "= j (50% of all
species pairs are of the predator-prey type). The inset shows
the corresponding rank abundance distribution (solid line from
theory, markers from simulations). Species are ordered accord-
ing to descending concentration, x1 ≥ x2 ≥ . . . ≥ xN , the
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relative rank n/N . Numerical simulations are performed at
N = 200, averaged over 400 samples.

excellently with results from numerical simulations of sys-
tems with N = 200 species (fig. 4). Our results thus
improve on the analysis in [47], who computed abundance
relations via so-called “target concentrations”. The latter
may a priori come out negative, and to circumvent this
technical problem Wilson et al. applied a heuristic cut-off,
for which there is no need in our exact approach. Still
results reported in fig. 4 are qualitatively similar to those
shown in [47] (see, e.g., their figure 1). For the model with
uniform carrying capacities across all species (Ki = 1 for
all i = 1, . . . , N), the abundance distribution is of a Gaus-
sian shape restricted to the positive axis. However, the
generalization to species-dependent carrying capacities Ki

is straightforward and inherently non-Gaussian species-
abundance relations are then to be expected.

Discussion. – We have shown how tools for the dy-
namics of disordered systems reveal the combined effects
of asymmetric interactions, predator-prey pairs and in-
teraction strength variability on the behavior of random
community Lotka-Volterra models. Our work confirms the
results obtained from the direct application of the cav-
ity method to fixed point relations of the system [23].
The analysis of the effective dynamics analysis provides
evidence that predator-prey interactions have a stabiliz-
ing effect on random community Lotka-Volterra dynamics,
whereas increased variability of the inter-species interac-
tion coefficients generally reduces stability. At the same
time, increasing the complexity of couplings leads to
smaller asymptotic food webs (due to extinction of species
in the transient dynamics). Communities with a large
number of surviving species are hence more likely to be
stable than smaller ones.
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DMFT: Non-Gaussian interactions

What happens for more general distributions?

PN(α) =
|α − μ(N )|−1+δ̄

2β̄δ̄Γ(δ̄)
e−|α−μ(N)|/β̄

PN(α) =
1

2πσ2/N
e− (α − μ/N )2

2σ2 /N
⟨α⟩ = μ /N

⟨α2⟩ − ⟨α⟩2 = σ2/N

⟨α⟩ = μ(N ) = μ /N

⟨α2⟩ − ⟨α⟩2 = β̄2δ̄(δ̄ + 1) = β̄(N )2δ̄(N )(δ̄(N ) + 1)



DMFT: Non-Gaussian interactions

What happens for more general distributions?

PN(α) =
|α − μ(N )|−1+δ̄

2β̄δ̄Γ(δ̄)
e−|α−μ(N)|/β̄

what scaling of pars?

PN(α) =
1

2πσ2/N
e− (α − μ/N )2

2σ2 /N
⟨α⟩ = μ /N

⟨α2⟩ − ⟨α⟩2 = σ2/N

⟨α⟩ = μ(N ) = μ /N

⟨α2⟩ − ⟨α⟩2 = β̄2δ̄(δ̄ + 1) = β̄(N )2δ̄(N )(δ̄(N ) + 1)

— different functions  give the same .
— higher cumulants are no longer zero 

β̄(N ) and δ̄(N ) var(α)
 JW Baron et al., Phys. Rev. Lett. (2023)



DMFT: Non-Gaussian interactions

Instead of considering only the first two cumulants, we introduce a distribution of the 
off-diagonal coefficients, , whose characteristic function scales with N asPN(αij)

lim
N→+∞

N ln (∫ dα PN(α)e−iαz) = F(z)

where F(z) is a complex function which is analytic at least at z=0, and F(0)=0. F(z)/N is the 
cumulant-generating function (because the ch.f. of a pdf is the exponential of its c.g.f.)



DMFT: Non-Gaussian interactions

Instead of considering only the first two cumulants, we introduce a distribution of the 
off-diagonal coefficients, , whose characteristic function scales with N asPN(αij)

lim
N→+∞

N ln (∫ dα PN(α)e−iαz) = F(z)

where F(z) is a complex function which is analytic at least at z=0, and F(0)=0. F(z)/N is the 
cumulant-generating function (because the ch.f. of a pdf is the exponential of its c.g.f.)

When  (higher cumulants are zero), we recover the assumptions 
of the standard DMFT:

F(z) = − iμz − σ2z2/2

αij =
μ
N

+
σ

N
zij

which means

PN(α) =
1

2πσ2/N
e− (α − μ/N )2

2σ2 /N



DMFT: Non-Gaussian interactions

?

PN(α) =
|α − μ/N|−1+δ̄(N)

2β̄(N )δ̄(N)Γ(δ̄(N ))
e−|α−μ/N|/β̄(N)

How do we scale the parameters with N in order to get a meaningful F(z)?
(Remember Marcinkiewicz's theorem: F(z) is either at most a polynomial of degree two 
or an infinite power series)

scaling of pars?

??
…
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δ̄(N ) = δ and β̄(N ) = β/ N

F(z) = − iμz − β2δ(δ + 1)z2/2

then we get
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2β̄(N )δ̄(N)Γ(δ̄(N ))
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(Remember Marcinkiewicz's theorem: F(z) is either at most a polynomial of degree two 
or an infinite power series)
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DMFT: Non-Gaussian interactions

δ̄(N ) = δ and β̄(N ) = β/ N

F(z) = − iμz − β2δ(δ + 1)z2/2

then we get

δ̄(N ) = δ/N and β̄(N ) = β

F(z) = − iμz −
δ
2

log(1 + β2z2)

instead we get

PN(α) =
|α − μ/N|−1+δ̄(N)

2β̄(N )δ̄(N)Γ(δ̄(N ))
e−|α−μ/N|/β̄(N)

How do we scale the parameters with N in order to get a meaningful F(z)?
(Remember Marcinkiewicz's theorem: F(z) is either at most a polynomial of degree two 
or an infinite power series)

scaling of pars



·xi(t) = xi(t) 1 − xi +
N

∑
j≠i

αijxj(t)  and .ri = 1 αii = − 1

N → ∞

N interacting species

DMFT: Non-Gaussian interactions

lim
N→+∞

N ln (∫ dα PN(α)e−iαz) = F(z) New generalised DMFT



·x(t) = x(t)[1 − x(t) + μM(t) + η(t)]

·xi(t) = xi(t) 1 − xi +
N

∑
j≠i

αijxj(t)  and .ri = 1 αii = − 1

no off-diagonal correlations

N → ∞

N interacting species

Equation for a representative species:

DMFT: Non-Gaussian interactions

lim
N→+∞

N ln (∫ dα PN(α)e−iαz) = F(z) New generalised DMFT



·x(t) = x(t)[1 − x(t) + μM(t) + η(t)]

⟨
r

∏
k=1

η(tk)⟩C = irbrr!⟨
r

∏
k=1

x(tk)⟩
— non-Gaussian coloured noise 
— self-consistent n-point temporal 
correlations

M(t) = ⟨x(t)⟩

Equation for a representative species:

DMFT: Non-Gaussian interactions

F(z) = ∑
r>0

brzr

where r=1,2,… and br is the coefficient of the series



Assuming that there exists a fixed point in the GLV and in the DMFT eq., i.e.,  lim
t→∞

x(t) = x*

DMFT: Non-Gaussian interactions

and  is a (self-consistent) stationary noise that satisfies ( ): η* μ = 0

0 = x* [1 − x* + μM + η*]

Pη(η*) = ∫ℝ

dz
2π

exp {izη* + ∫
∞

−1
dη′ Pη(η′ )F(z + zη′ )}

x*(η*) = 1 + μM + η*

When […]>0, the stable solution is



DMFT: Non-Gaussian interactions

The modified GLV equation ( )β > 1

·xi(t) = xi(t) 1 − xβ
i +

N

∑
j≠i

αijxj(t)
-stable distribution

            with exponent  (i.i.d, )
            the ch.f. is 

αij ∼ α
α i ≠ j

exp(−γ |z |α )



DMFT: Non-Gaussian interactions

The modified GLV equation ( )β > 1

·xi(t) = xi(t) 1 − xβ
i +

N

∑
j≠i

αijxj(t)
-stable distribution

            with exponent  (i.i.d, )
            the ch.f. is 

αij ∼ α
α i ≠ j

exp(−γ |z |α )

P+(x) = β
ϕ+

xβ−1Pη(xβ − 1)Θ(x) ∼ x−αβ−1

The new DMFT predicts (exact solution) a distribution of surviving populations: 

as x ≫ 1
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DMFT: Non-Gaussian interactions

a species is connected to other c species on average and  is the distribution of the non-
zero interactions;

𝒬(α)

In the sparse case of the GLV system, we assume that

PN(α) = (1 − c
N )δ(α) + c

N 𝒬(α)



DMFT: Non-Gaussian interactions

a species is connected to other c species on average and  is the distribution of the non-
zero interactions;

𝒬(α)

In the sparse case of the GLV system, we assume that

PN(α) = (1 − c
N )δ(α) + c

N 𝒬(α)

P+(x) ∝ 𝒬(x − 1)

when c is small and x>1 (1 is the carrying capacity) we obtain

we can statistically infer (some) interactions from a macroscopic pattern

L. Poley et al., https://arxiv.org/abs/2404.08600; J. Il Park et al., https://arxiv.org/abs/2403.15730; 
F. Aguirre-Lopez, https://arxiv.org/abs/2404.11164; F. Metz, https://arxiv.org/abs/2406.06346



DMFT: Non-Gaussian interactions

The distribution of species abundances is not 
a Gaussian; shapes are much more realistic
The distribution of species abundances 
depends on all cumulants; 
It can be a power law or other (more 
realistic) curves;
There is a link between microscopic 
interactions and macroscopic patterns (SAD);
gDMFT allows to introduce sparse 
interactions;

Brief summary:
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σ = N(⟨α2
ij⟩ − ⟨αij⟩2)1/2

10-1-2

1

2

μ = N⟨αij⟩

Brief summary:

The distribution of species abundances is not 
a Gaussian; shapes are much more realistic
The distribution of species abundances 
depends on all cumulants; 
It can be a power law or other (more 
realistic) curves;
There is a link between microscopic 
interactions and macroscopic patterns (SAD);
gDMFT allows to introduce sparse 
interactions;
The phase diagram is more complicated



DMFT: Non-Gaussian interactions

σ = N(⟨α2
ij⟩ − ⟨αij⟩2)1/2

10-1-2

1

2

μ = N⟨αij⟩

Brief summary:

The distribution of species abundances is not 
a Gaussian; shapes are much more realistic
The distribution of species abundances 
depends on all cumulants; 
It can be a power law or other (more 
realistic) curves;
There is a link between microscopic 
interactions and macroscopic patterns (SAD);
gDMFT allows to introduce sparse 
interactions;
The phase diagram is more complicated

S.A. & A. Maritan, Phys. Rev. Lett. (2024)
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Fluctuating interaction network and time-varying 
stability of a natural fish community
Masayuki Ushio1,2,3,4, Chih-hao Hsieh5,6,7, Reiji Masuda8, Ethan R Deyle9, Hao Ye9,10, Chun-Wei Chang6, George Sugihara9 & 
Michio Kondoh1

Ecological theory suggests that large-scale patterns such as 
community stability can be influenced by changes in interspecific 
interactions that arise from the behavioural and/or physiological 
responses of individual species varying over time1–3. Although 
this theory has experimental support2,4,5, evidence from natural 
ecosystems is lacking owing to the challenges of tracking rapid 
changes in interspecific interactions (known to occur on timescales 
much shorter than a generation time)6 and then identifying the 
effect of such changes on large-scale community dynamics. Here, 
using tools for analysing nonlinear time series6–9 and a 12-year-long 
dataset of fortnightly collected observations on a natural marine fish 
community in Maizuru Bay, Japan, we show that short-term changes 
in interaction networks influence overall community dynamics. 
Among the 15 dominant species, we identify 14 interspecific 
interactions to construct a dynamic interaction network. We show 
that the strengths, and even types, of interactions change with 
time; we also develop a time-varying stability measure based on 
local Lyapunov stability for attractor dynamics in non-equilibrium 
nonlinear systems. We use this dynamic stability measure to 
examine the link between the time-varying interaction network 
and community stability. We find seasonal patterns in dynamic 
stability for this fish community that broadly support expectations 
of current ecological theory. Specifically, the dominance of weak 
interactions and higher species diversity during summer months 
are associated with higher dynamic stability and smaller population 
fluctuations. We suggest that interspecific interactions, community 
network structure and community stability are dynamic properties, 
and that linking fluctuating interaction networks to community-
level dynamic properties is key to understanding the maintenance 
of ecological communities in nature.

The dynamics of ecological communities are influenced by inter-
specific interactions occurring at multiple temporal and spatial scales. 
Earlier studies have focused mainly on long-term effects; specifically 
those that focus on the timescale of the birth–death process (for 
 example, predator–prey interactions)10–13 or those that relate com-
munity stability to gross properties of the interaction network such 
as mean interaction strength, preponderance of weak interactions 
and species diversity10,14,15. However, more recent theoretical and 
experimental studies have revealed that temporally variable ecological 
and/or biological responses (including physiological and behavioural 
responses) can have considerable effects on community dynamics1,2,4. 
In other words, short-term responses such as adaptive resource choice, 
inter-habitat movement or physiological metabolic responses can in 
principle generate rapid changes in interaction strength, influence 
population dynamics and even reverse the classic relationship between 
community complexity and stability1.

Although the arguments are compelling, evidence is lacking for 
whether and how short-term fluctuations in interspecific interactions 
influence the overall stability of ecological communities in nature. 
There are two main challenges here: (1) quantifying fluctuating 
interspecific interactions and (2) evaluating fluctuating community 
stability. First, there is the practical challenge of measuring rapidly 
changing multiple interactions as they occur in nature. Traditional 
approaches such as direct observation and experimental manipulations 
(for  example, species exclusions) have provided insights into species 
interactions and their consequences for community  dynamics2,16,17. 
For example, manipulative experiments have shown that the interac-
tions of species are often variable and that this variability can strongly 
 influence the dynamics of a local community5,17. However, as has  

1Department of Environmental Solution Technology, Faculty of Science and Technology, Ryukoku University, Otsu 520-2194, Japan. 2Joint Research Center for Science and Technology, Ryukoku 
University, Otsu 520-2194, Japan. 3Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan. 4PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan. 
5Institute of Oceanography, Institute of Ecology and Evolutionary Biology, and Department of Life Science, National Taiwan University, Taipei 10617, Taiwan. 6Taiwan International Graduate 
Program (TIGP)–Earth System Science Program, Academia Sinica and National Central University, Taipei 11529, Taiwan. 7National Center for Theoretical Science, Taipei 10617, Taiwan.  
8Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Maizuru, Kyoto 625-0086, Japan. 9Scripps Institution of Oceanography, University of California 
at San Diego, La Jolla, California 92093, USA. 10Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida 32611, USA.
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Figure 1 | Reconstructed interaction network of a subset of the Maizuru 
Bay fish community. Arrows indicating interspecific interactions are 
assigned on the basis of the results of convergent cross mapping (Extended 
Data Table 1). Blue and red colours indicate positive and negative 
interactions, respectively, calculated by the S-map method based on the 
12-year average. All fish images by R.M.
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previously been shown6, these approaches are labour-intensive and 
are not feasible for studying large ecological communities in nature. 
Second, because interspecific interactions vary over time, the resultant 
community stability also varies3; this means that evaluating  community 
stability is not at all straightforward. Natural ecosystems do not 
 typically exhibit  equilibrium dynamics7–9,18 that would accommodate 
a standard calculation of stability. Thus, for non-equilibrium systems 
that possess intrinsic variability (that is, systems that exhibit nonlinear  
dynamics) the magnitude of population fluctuations (for example, 
coefficient of variation of abundance) may not be a good indicator of 
community stability or resilience, because there exists the potential for 
confounding effects. Here we look instead at a measure that accounts 
for nonlinear dynamics and that tracks community stability as it varies 
through time. Relating fluctuating interaction networks to community 
stability is crucial for understanding how natural ecological commu-
nities are maintained.

Fluctuating ecological interaction networks can be identified 
and measured with empirical dynamic modelling6–9,18,19—tools 
based on attractor reconstruction that are specifically designed for 
 analysing nonlinear dynamical systems from their time series6–9,18,19  
(see Extended Data Fig. 1, Methods and Supplementary Information 
section 1).

We begin by applying convergent cross mapping7, an empirical 
dynamic modelling causality test, to identify the linkages defining the 
interaction network for the fish community in Maizuru Bay, a 12-year-
long monitoring study that collected observations once every two 
weeks20 (Extended Data Fig. 2). Overall, we identify 14 interspecific 
interactions among the 15 dominant fish species (Fig. 1, Extended Data 
Fig. 3 and Extended Data Table 1). Most of the detected interactions 

are ecologically interpretable (Supplementary Information  section 
2), and all the species—except Engraulis japonicus—have at least one 
 interaction, which indicates that interspecific interactions have a 
non-trivial role in the community dynamics.

The attractor for a set of causally related fish species is constructed by 
plotting their abundances as a point in a coordinate space in which the 
axes are the set of causally related species (see Methods), and tracing 
the position forward in time to delineate a trajectory7 (https://youtu.
be/fevurdpiRYg). As the system travels along its attractor, S-maps 
 (sequential locally weighted global linear maps) can be used to com-
pute sequential Jacobian matrices9, the elements of which are partial 
derivatives that describe the changing interactions between species6; 
this is known as the multivariate S-map method6,9,18 (see Methods).

Figure 2a shows that interactions in the Maizuru Bay fish commu-
nity are not static; this contradicts a common assumption of ecological 
research. Instead, they change over time, as expected for a system with 
nonlinear dynamics (Extended Data Table 2). Of the 14 interspecific 
interactions, on average 8 are negative and 6 are positive. The right-
skewed distribution of mean interaction strengths in Fig. 2b shows that 
the interaction network is dominated by weak links; this domination is 
hypothesized to be a stabilizing property14,15. There is also a clear sea-
sonal pattern at the community level; weak interactions become more 
dominant during summer months than during winter months (Fig. 3), 
with a lower median:maximum interaction strength ratio (as this index 
decreases, weak interactions become more dominant). These fluctu-
ations in interaction strengths could be driven by a number of mech-
anisms acting independently or together; these include time-varying 
behavioural and/or physiological responses1–3, fluctuations in species 
diversity21, or a weakening of interactions among fish species due to 
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Figure 2 | Time-varying interspecific interactions in a subset of the 
Maizuru fish community. a, Fourteen interspecific interactions quantified 
by the S-map method. The x axis indicates the sampling time (2-week 

intervals) from 2002 to 2014. b, The distribution of average interaction 
strengths over the 12-year sampling period.
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time-dependent interactions: stationary distributions
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P*τ (x) =
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Z ( 1
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2D (x−x̄)2

There are no extinctions, but a peak at x=0 
grows as  (quenched noise limit) τ → ∞
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which leads to a self-consistent Fokker-Planck equation:

·p(x, t) = − ∂x[x(1 − x + μ⟨x(t)⟩)p(x, t)] +
σ2⟨x(t)2⟩

2
∂x[ x∂x xp(x, t)]

with stationary distribution (Gamma distribution)

β =
2

σ2⟨x2⟩
δ =

2(1 + μ⟨x⟩)
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and to what degree they could alter the patterns
described here [(18) and references therein].

Discussion
Exploring Potential Causes for Hyperdominance
We found no evidence that two key functional
traits for trees, seed mass and wood density,

vary consistently with hyperdominance. The
227 hyperdominant species include both shade-
tolerant, typically large-seeded climax species
with dense wood (e.g., Chlorocardium rodiei,
Clathrotropis spp., and Eperua spp.) and shade-
intolerant, small-seeded pioneers with light wood
(e.g., Cecropia spp., Jacaranda copaia, and Laetia

procera). Given that most hyperdominant spe-
cies attain very high local densities (>60 trees/ha)
somewhere in the plot network, we predict that
they will be found to be disproportionately re-
sistant to pathogens, specialist herbivores, and
other sources of frequency-dependent mortality
(19, 20).

Table 1. Population characteristics of the 20most abundant tree species
of the Amazon. Mean estimated population sizes of the 20 most abundant
tree species in Amazonia and the empirical abundance and frequency data on

which the estimates were based. Median values for the 207 other hyper-
dominant species and for the 4735 other valid species in the data set are
provided for comparison. Data on all species can be found in appendix S1.

Species Mean estimated
population in the Amazon

SD estimated
population (%)

No. trees
in data set

% of all plots
where present

Maximum abundance
recorded (trees/ha)

Euterpe precatoria 5.21 × 109 9.9 5903 32.7 168
Protium altissimum 5.21 × 109 18.0 5889 15.6 128
Eschweilera coriacea 5.00 × 109 5.6 9047 47.9 28
Pseudolmedia laevis 4.30 × 109 8.9 5285 36.1 121
Iriartea deltoidea 4.07 × 109 13.1 8405 18.5 169
Euterpe oleracea 3.78 × 109 17.5 8572 7.4 397
Oenocarpus bataua 3.71 × 109 10.7 4767 29.9 108
Trattinnickia burserifolia 2.78 × 109 29.4 3023 10 125
Socratea exorrhiza 2.68 × 109 10.8 863 28.6 82
Astrocaryum murumuru 2.41 × 109 11.2 5748 16.7 325
Brosimum lactescens 2.28 × 109 10.0 2234 28.2 106
Protium heptaphyllum 2.13 × 109 32.2 1365 11.3 169
Eperua falcata 1.95 × 109 15.8 1898 10.9 266
Hevea brasiliensis 1.91 × 109 15.5 6031 14.8 179
Eperua leucantha 1.84 × 109 32.3 1453 1.4 282
Helicostylis tomentosa 1.79 × 109 25.6 1948 36.5 89
Attalea butyracea 1.78 × 109 16.2 2561 5.8 73
Rinorea guianensis 1.69 × 109 18.6 1243 13.7 182
Licania heteromorpha 1.57 × 109 14.4 2483 35 173
Metrodorea flavida 1.55 × 109 14.7 1326 7.7 128
Median of other hyperdominant species 5.79 × 108 808 11.4 60
Median of non-hyperdominant species 1.11 × 107 15 0.5 5

Fig. 2. A rank-abundance diagram of 4962 tree species extrapolated to estimate the size of the Amazon tree flora. The mean estimated Amazon-
wide population sizes of 4962 tree species are shown as a solid line, and the dotted line is an extrapolation of the distribution used to estimate the total number
of tree species in Amazonia.
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The vast bulk of biodiversity is very rare: why?
Apparently, there are no traits that allow abundant species to escape rarity;
superiority in competition for resources is not necessary for dominance!



in the human microbiome different species can take 
dominant positions over time;
dominance by a single species is common but short-lived;
rare species may become dominant with unpredictable 
alternations both under controlled laboratory conditions and 
in natural communities;
while the presence of a functional group is predictable, the 
identity of the dominant species is not;

Some evidences:
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dominance by a single species is common but short-lived;
rare species may become dominant with unpredictable 
alternations both under controlled laboratory conditions and 
in natural communities;
while the presence of a functional group is predictable, the 
identity of the dominant species is not;

species within a functional group share a single niche and within this niche species 
are near neutral. This leads to instability of dominance by functionally similar species;
stochastic origin of hyper-dominance: because fluctuations are proportional to 
abundances (multiplicative noise), the rates of change of rare species are slow;
rare species may serve as an insurance to maintain function in times of adverse 
events, because of their different sensitivity to stressors and natural enemies;

Functional redundancy and near neutrality:

Some evidences:
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logistic growth of the i-th resource



What’s nice about MacArthur’s model?

when  are all very large, the dynamics of resources is very fast and we can use the quasi-stationary 
assumption, hence  . 
The dynamics of the densities can be recast as

μi
ci ≃ 1 − ∑σ nσασi /μi

·nσ = nσ[kσ − ∑
ρ

aσρnρ]
kσ = ∑

i

ασi − βσ

aσρ = ∑
i

ασiαρi

μi

where 

we recover the GLV-equations at leading order in the quasi-stationary regime,  
and species’ interactions are a measure of the niche overlap.

Chesson P., Theor. Popul. Biol. 37, 26-38 (1990)
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… but “all that glitters is not gold”

MacArthur’s model at stationarity provides N conditions for R concentrations 

R

∑
i=1

ασic*i = βσ for σ = 1,2,…, N

This eq. cannot have a solution if N>R. 

Competitive Exclusion Principle: The total number of coexisting species cannot exceed the total 
number of resources on which they feed (at stationarity).

This is not good news for large scale species coexistence!
Do we really have one species per niche?
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ασi(t) =
ᾱ
N

+
Σ

N
Zi

σ(t)

⟨Zi
σ(t)Zi′ 

σ′ (t′ )⟩ =
1 + 2τ/τ0

2τ
e−|t−t′ |/τ

q(|t−t′ |)

δσ,σ′ δi,i′ 

Now you take the limit 
 and  such 

that  is constant and 

apply DMFT…

N → ∞ R → ∞
ν =

N
R

A.R. Batista-Tomàs et al., 
Chaos 31, 103113 (2021)



The MacArthur’s consumer-resource model 
with time-dependent metabolic strategies

·n(t) = n(t)[ ᾱρc(t)
ν

− β +
Σ

ν
ξn(t) +

Σ2

ν ∫
t

0
dt′ q( | t − t′ | ) Gc(t, t′ )n(t′ ) + hn(t)]

·c(t) = c(t)[μ[1 − c(t)] − ᾱρn − Σξc(t) − Σ2 ∫
t

0
dt′ q( | t − t′ | )Gn(t, t′ )c(t′ ) + hc(t)]

·nσ = nσ[
R

∑
i=1

ασi(t)ci − β]
·ci = ci[μi(1 − ci) −

N

∑
σ=1

nσασi(t)]

where
ν = lim

N
R

⟨ξn(t)ξn(t′ )⟩ = q( | t − t′ | )⟨c(t)c(t′ )⟩paths

⟨ξc(t)ξc(t′ )⟩ = q( | t − t′ | )⟨n(t)n(t′ )⟩paths

ρn(t) = ⟨n(t)⟩paths

ρc(t) = ⟨c(t)⟩paths



The MacArthur’s consumer-resource model 
with time-dependent metabolic strategies

P(n) = Z−1n−1+δne−n/βn

When we take the white noise limit ( ), we obtain τ → 0

where

δn =
2ᾱ⟨c⟩ − 2νδ
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βn =
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so we can violate the CEP when ν > 1

⟨c⟩ >
νδ
ᾱ

⟨n⟩ <
μ
ᾱ



The MacArthur’s consumer-resource model 
with time-dependent metabolic strategies

P(n) = Z−1n−1+δne−n/βn

When we take the white noise limit ( ), we obtain τ → 0

comparison simulations and theory:
N=200, R=10



A final summary

❖ Species abundances can be explained with heterogeneous yet structureless interactions; 
❖ time-varying interactions help coexistence in GLV;
❖ time-varying interactions help violating the Competitive Exclusion Principle in CR.
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Classical explanations 
of coexistence  
(neo-Darwinism):

❖ the ecological niche is the 
range of environmental 
conditions that allow a 
population to persist in a 
given location — i.e., the 
growth rate is non-
negative (G. H. 
Hutchinson, 1958-59)

❖ the split of resources is an 
outcome of the co-
evolution of species in 
competition (J. Connell, 
1975)

D’Andrea et al., Ecology, 2020 

Alternative ways of explaining coexistence


